UNIVERSITY

9,
outLu

DEPARTMENT OF ELECTRICAL AND INFORMATION ENGINEERING
DEGREE PROGRAMME IN INFORMATION ENGINEERING

A MOBILE VECTOR GRAPHICS QUALITY
ANALYSIS TOOLKIT

Author

Sami Kyostila
Supervisor

Juha Roéning
Accepted /2008

Grade

Kydstila S. (2008) A Mobile Vector Graphics Quality AnalysisToolkit. Department
of Electrical and Information Engineering, University ofilD, Oulu, Finland. Master’s
thesis, 100 p.

ABSTRACT

High resolution displays, fluid user interfaces and impresise graphics have be-
come essential features of modern mobile devices. This trerfths prompted a
move from traditional pixel-based graphics to more flexibleand efficient vector
graphics. The relationship between graphics content and pé&srmance, however,
Is not always straightforward with vector graphics. This discrepancy has resulted
in applications suffering from a number of quality issues, sich as poor perfor-
mance, high memory usage or extraneous power consumption.

This thesis examines the process of analyzing these qualitygblems. We
focus on mobile applications that use three-dimensional GganGL ES or two-
dimensional OpenVG graphics. To help solve a given qualityssue, we classify
it as a distinct class, based on the dominant cause behind thesue. We note that
this classification process requires a great deal of inform#on about the graphics
of the examined application. Obtaining this quantity of information is not practi-
cal with the tools currently available.

To obtain this data, we will design and implement a set of toal. The key idea is
to capture or trace the graphics drawing commands executedyban application
into a file for further offline processing. These commands arelten analyzed, pro-
cessed and transformed to gain the necessary level of insigihto the examined
guality issue.

We then demonstrate the usage of the toolkit in examining paoapplication
performance, a visual error in an application, the quality of a seemingly well-
performing application, the performance profiles of a numbe of graphics imple-
mentations and the detailed graphics content features of aapplication.

Having completed these use cases successfully, we concldiat the tracer
paradigm is a viable approach for analyzing quality issuesn mobile vector graph-
ics applications.

Keywords: graphical debugging, tracing, content featuresOpenGL ES, OpenVG

Kydstila S. (2008) Mobiilivektorigrafiikkasovellusten laadun analysointitydkalu.
Oulun yliopisto, sahko- ja tietotekniikan osasto. Diploydi 100 s.

TIIVISTELMA

Tarkoista naytoista, virtaviivaisista kayttoliittymist a ja nayttavasta grafiikasta on

tullut nykyaikaisten mobiililaitteiden perusedellytyksia. Tama suuntaus on johta-
nut siirtymiseen perinteisesta pikselipohjaisesta grafkasta monipuolisempaan ja
tehokkaampaan vektorigrafiikkaan. Graafisen sisallon ja swrituskyvyn suhde ei

kuitenkaan ole aina suoraviivainen vektorigrafiikkaa kaytettdessa. Tama on joh-
tanut laadullisesti puutteellisiin sovelluksiin, jotka k&rsivat huonosta suoritusky-

vystd, korkeasta muistinkaytosta tai liiallisesta tehonkilutuksesta.

Tassa diplomitydssa kasitellaan naiden laatuongelmien ahgsointia. Tydssa
tutkitaan mobiilisovelluksia, jotka hyédyntavat kolmiul oitteista OpenGL ES -
grafiikka tai kaksiuloitteista OpenVG-grafiikkaa. Sovelluksissa esiintyvia laa-
tuongelmia pyritdan ratkaisemaan luokittelemalla ongelnat niitd aiheuttavan te-
kijan perusteella. TAman luokittelupdatoksen tekeminen edllyttaa tarkkaa tie-
toa sovelluksen graafisesta sisallosta. Tallaisen tiedon hienta ei kuitenkaan ole
kaytannollista nykyisin saatavissa olevilla tytkaluilla

Tybssa esitellaan tydkaluohjelmisto laatuongelmien luakeluun vaadittavan
tiedon hankintaan. Tydkalun keskeinen lahtbkohta on talletaa sovelluksen teke-
mat graafiset piirtok&skyt tiedostoon myohempaa analysoitia varten. Naita piir-
tokaskyja analysoidaan ja kasitellaén tarvittavan ymmarryksen saavuttamiseksi
tutkittavasta laatuongelmasta.

Tybkalun toimintaa esitellaan tutkimalla riittamattoman suorituskykyistéa so-
vellusta, visuaalista virhettd sovelluksen grafiikassa, fiennaisesti laadukkaan so-
velluksen toteutusta, useiden eri grafiikkatoteutusten sorituskykya seka yksityis-
kohtaisia tilastoja sovelluksen graafisesta sisallosta. &iden kayttdtapausten on-
nistuneella toteutuksella osoitetaan, etta grafiikkakésyjen tallentaminen ja jat-
kokasittely on kaytannéllinen menetelma laatuongelmien maalysointiin vektori-
grafiikkaa hyddyntavissad mobiilisovelluksissa.

Avainsanat: graafinen vianetsinta, kaskyjen tallennus, siallén ominaisuudet, OpenGL

ES, OpenVG

CONTENTS

ABSTRACT

TIIVISTELMA

PREFACE

LIST OF SYMBOLS AND ABBREVIATIONS

1. INTRODUCTION 8
2. MOBILE COMPUTER GRAPHICS 10
2.1. Vector and Bitmap Graphics, 10
2.1.1. Hardware Acceleration and Standardization 11
2.2. Mobile Application Platform 12
2.3. Challenges in Mobile Vector Graphics 13
2.4. Vector Graphics and the Perception of Quality 15
2.5. Detecting Quality Problems 16
2.6. Classifying Quality Problems 17
2.6.1. GraphicsAPIUsage 17
2.6.2. Graphics Content Complexity 18
2.6.3. Graphics Engine Performance 19
2.6.4. Quality Problems Unrelated to Graphics 19
2.7. The Graphics Quality Analysis Toolkit 19
2.8. PreviousWork 20
2.8.1. GraphicsCommand Tracing 21
2.8.2. Graphics State Tracking 22
2.8.3. Graphical Debugging, 23
2.8.4. Graphics Workload Characterization 24
3. VECTOR GRAPHICS APIS 25
3.1. Evolution of 3D GraphicsAPIs 52
3.2. Origins of 2D Vector GraphicsAPIs 27
3.3. Graphics Primitives 27
3.4. OpenGL ES 1.x Rendering Pipeline 28
3.5. OpenVG 1.x Rendering Pipeline 30
3.6. Native Windowing System Integration 32
3.7. Performance Factors 33
4. GRAPHICS QUALITY ANALYSIS TOOLKIT REQUIREMENTS 37
4.1. Functional Requirements, 37
4.1.1. Tracer e e e e 37
4.1.2. TracePlayer 38
4.1.3. TraceAnalyzer 38
4.2. Non-functional Requirements. 39
43. UseCases i e 39

4.3.1. Unsatisfactory Application Performance
4.3.2. Visual Errorin Application
4.3.3. Application Quality Analysis
4.3.4. Graphics Engine Benchmarking
4.3.5. Graphics ContentAnalysis

GRAPHICS QUALITY ANALYSIS TOOLKIT ARCHITECTURE

5.1. Tracer and Trace Player Generator
5.1.1. APIConfiguration
5.1.2. Working with Generated Code

5.2. Tracer
5.2.1. PlatformSecurity L.
5.2.2. Performance Considerations
5.2.3. Portability
5.2.4. TraceFiles
5.25. StateTracking
5.2.6. TracingOpenGLES
5.2.7. TracingOpenVG
5.2.8. TracingEGL

5.3. TracePlayer
5.3.1. Trace Normalization
5.3.2. TracePortability
5.3.3. Performance Considerations

5.4. Trace Analyzer
54.1. Userinterface
5.4.2. Trace Manipulation
5.4.3. Content Statisticsand Graphs
5.4.4. State and Frame Extraction
5.4.5. Scripting Interface
5.4.6. Trace QueryLanguage
5.4.7. Exporting TracesasCCode

USE CASE DEMONSTRATION

6.1. Unsatisfactory Application Performance
6.2. Visual Error in Application
6.3. Application Quality Analysis
6.4. Graphics Engine Benchmarking
6.5. Graphics ContentAnalysis

DISCUSSION

7.1. FutureWork

CONCLUSION

REFERENCES

PREFACE

This work was carried out for the Display & Graphics Softwgreup of the Tech-
nology Platforms unit of Nokia Corporation, R&D Oulu. A numbafr illustrative
elements used in this thesis were derived from the Oxygampcgject under the Cre-
ative Commons Attribution-Share Alike 3.0 License.

The initial design for the Graphics Quality Analysis Toollwas created together
with Kari J. Kangas, Mika Qvist and other members of the Nd@isplay & Graphics
Software group. This project builds on earlier work in graglperformance measure-
ment done by Kari J. Kangas and Kari Pulli since 2004.

| would like to thank my supervisors Juha Réning, Dr. Techd Kari Pulli, Ph.D.,
for their valuable input and discussions during the coufsinis work. | also wish
to extend my warm thanks to those who have helped me in coimglétis work,
especially Kari J. Kangas, Mika Qvist, Sila Kayo, Marianngavia, Jani Vaarala and
others from the Display & Graphics Software team.

Oulu, Finland, February 16, 2008

Sami Kyostila

LIST OF SYMBOLS AND ABBREVIATIONS

2D Two-dimensional

3D Three-dimensional

API Application programming interface
CPU Central processing unit
DLL Dynamic link library

GDI Graphics device interface
GPU Graphics processing unit
GPS Global positioning system
M3G Java Mobile 3D graphics
(ON Operating system

SVG Scalable vector graphics
SQL Structured query language

VGA Video graphics array

1. INTRODUCTION

The use of vector graphics in smartphones and other mobileateis increasing
rapidly. Mobile applications such as games, map navigaigtware, and system user
interfaces are making the transition from traditional l@p¥based graphics to vector
graphics. Free scalability, reduced power consumptiasutliin hardware acceleration,
flexible animation support and compact representation g the key advantages
of the technology. These benefits make vector graphics aacte solution with
which to meet the demand for increasing display resolutargfluid user interfaces
in modern mobile devices.

The adoption of the technology, however, has not been witbloallenges. Many
mobile vector graphics applications suffer from variouslgy issues from jerky ani-
mation to high processor, memory and power consumptionséd pemblems are caused
by factors such as:

¢ the quick transition to vector graphics technology in entdsetidevices, which
have traditionally only used bitmap graphics

e the complex relationship between vector graphics contedhtlae resulting per-
formance

e developer experience with much more powerful platformssas PCs, where
software inefficiencies can be mitigated with ever-incieghardware speeds
and

e not designing applications with performance in mind frora #tart, but instead
tackling performance issues as they arise

Such quality issues have an immediate impact on device ligaid on perceived
product quality. Solving them is therefore a way to enharsss axperience. Although
graphics analysis tools such as debuggers exist, they agrally designed for more
powerful devices such as PCs and commonly limited to a singléopm or graphics
API. The development environment for embedded devicesusllyscross-platform
and more limited in terms of performance. Furthermore, afdbd software is often
written at a stage when the target hardware is only availatd® immature prototype
form, making it difficult to use debugging software built fmoduction hardware.

This M.Sc thesis focuses on the process of analyzing andhgolliese quality is-
sues; our aim is to provide practical and efficient meansudysthe quality of mobile
vector graphics applications. Our system is based on epéirg graphics commands,
I.e., graphics API function calls and associated argumetd,do a trace file, which
is then analyzed with a dedicated tool in a workstation emrirent, surpassing the
limitations of embedded hardware. Our work focuses on agptins employing ei-
ther OpenGL ES 1.1 or OpenVG 1.0 -based graphics. We maialyae applications
running on Nokia smartphones, which use the Symbian operagistem.

This text is written from the perspective of a system levekipics integration team
within Nokia. As our work revolves around developing, tegtiand integrating graph-
ics technologies for various platforms, the low quality ettor graphics applications

is an issue with which we are very familiar. Although our origational responsi-
bilities are undoubtedly reflected in the design of the ti@kd the quality analysis
process, it should be stressed that the utility of thesestigohot limited to a system
integration level.

10

2. MOBILE COMPUTER GRAPHICS

Computer graphics is the practice of using computationasiroots to produce and

manipulate synthetic visual images. A broad term, compgtaphics encompasses
everything from image processing to digital animation,ecicgames, graphical user
interfaces and more. For the purposes of this thesis, wesfoguwo major sub-fields

of computer graphics: two-dimensional (2D) and three-disngnal (3D) graphics.

In this chapter, we will first introduce the concepts of cotep@and vector graphics
and discuss their applications in mobile devices. We thewenum to examine vec-
tor graphics quality, its measures and the methods usedalyzng quality issues.
Finally, we present the design of the Graphics Quality Asiglyfoolkit for enabling
practical and efficient analysis of vector graphics quadispes.

2.1. Vector and Bitmap Graphics

The fundamental principle of vector graphics is the use dheraatical descriptions
of geometric primitives such as lines, triangles, and caiteeproduce pictures. This
Is in contrast with more traditional bitmap graphics, wherhploy two-dimensional
arrays of picture elements or pixels; each pixel repregdtetsolor at a single point in
the corresponding picture.

The benefits of vector graphics, as opposed to bitmap grapiniclude unlimited
scaling and transforming, as illustrated in Figure 1, re$oh independence and a
compact memory-efficient representation. Due to theserémheadvantages, vector
graphics has been widely adopted in fields such as compwphigs and the printing
industry.

In computer graphics, two major variants of vector graphiage emerged: three-
dimensional graphics, which are constructed in three-dsimmal space, and two-
dimensional graphics that reside on a two-dimensionalpld@he former is most often
used in virtual reality systems and games, while the lasteisually employed in user
interfaces, graphic illustrations, and drawing programs.

In order to display vector graphics, a process called riast&wn must be performed.
In rasterization, vector graphics are converted from theithematical representation
to an array of pixels, that is, an image that can be displayeti® screen.

In terms of algorithmic complexity, drawing traditionaltimiap graphics is quite
straightforward: the computational and storage cost ah@i images is usually
linearly-dependent on the number of pixels involved. Frdms telation it quickly
becomes apparent why ensuring high graphics performanoenies more difficult
with increasing screen resolutions: if the screen resmiutioubles, the cost of using
bitmap images is effectively multiplied by four. More impamtly, the storage space
requirements of bitmap images also increase by a factonof igading to more mem-
ory consumption.

In contrast, the algorithmic complexity of vector graphiasterization is far from
obvious: vector images can consist of arbitrarily simpleetailed shapes, regardless
of the resolution of the display device. Similarly the st@aspace requirements of
vector images are independent of the display size and dapandy on the level of
detail in the image.

11

Vector graphics Bitmap graphics

Figure 1. Veector graphics can be scaled freely, while bitgraphics become pixelated
in the same process.

A similar division between vector and bitmap graphics aiseanimated graphics.
Animation using bitmap images is commonly created by priegamultiple images
or frames, each of which show a particular stage of the cam@aleimation. These
images are then shown in rapid succession, creating tisgoifiof continuous motion.
Due to the high number of images required for non-trivialnaations, the memory
cost of this method quickly becomes prohibitive. One soluts to reduce the data set
with video compression methods that exploit the redundsnici successive frames.
This method has the downside that due to the high computdtmyst of most of
the compression algorithms, the animation content is ¢éisdlgrfixed and cannot be
generated on demand as a response to, for instance, userAggin, vector graphics
offers a viable alternative approach for producing anioratthe animation frames can
be drawn with vector shapes by changing the mathematicpépties, such as the size,
form or position, of shapes based on the progression of tiith this method, each
animation frame is generated on demand by rasterizing ttemgraphics scene at that
point in time. This method is also much more efficient in teohstorage space, since
an animation file only needs to contain the basic propertighe animated shapes
instead of their full pixel representation as with bitmapgics.

2.1.1. Hardware Acceleration and Standardization

The designer of a vector graphics system has two choicetong@phics may be ras-
terized using the main application processor of the systera,specialized hardware
accelerator can be built to perform the rasterization tddkese graphics processors
units, GPUs, can typically perform rasterization many osdd magnitude faster than
an implementation using the generic application processeo-called "software im-
plementation”. Another advantage of hardware acceler&dhst they can operate in
parallel with the application processor, enabling othecpssing while vector graphics
are being rasterized.

12

As the process of rasterizing vector graphics images @afigmesults in a bitmap
image, it is apparent that as with all bitmap images, the dexity of this operation
is also very much dependent on the number of pixels produltedther words, the
resolution of the display device is an important factor itedaining the performance
of a vector graphics system. For a software vector graphiptementation, this repre-
sents a major stumbling block: even though the vector gesghiages themselves are
resolution-independent and compactly represented widingéric primitives, the final
rasterization step becomes prohibitively expensive asescsizes increase. A dedi-
cated hardware accelerator, however, is not limited infédsfion: depending on the
architecture, it may produce multiple output pixels in platawhich translates into a
much improved rasterization speed. Therefore, as theagispkolutions in mobile de-
vices continue to increase, the need for hardware accetevattor graphics becomes
apparent.

The first step in enabling robust hardware acceleration ethrology is to create
a standard abstraction layer that provides a clean separagitween the application
and the actual implementation of the technology. In softwavelopment terms, this
layer is called the application programming interface odl.AR computer graphics
terms, the software or piece of hardware that implementadhel API functionality is
called the graphics engine. A common configuration of thesgponents is illustrated
in Figure 2. The use of a standard API effectively decouptesapplication from
the graphics engine implementation, enabling applicgammability between different
engine implementations.

Thanks to the long heritage of the technology, many APIs Hmeen created for
programming vector graphics. Today, the dominant 3D gi&pAPIs are Microsoft's
Direct3D [1] and Khronos Group’s OpenGL [2], both of whicleawidely used in
desktop PCs, game consoles, engineering tools, and saemylications.

The mobile and embedded electronics vendors, however, lsstviltese APIs had
accumulated such a vast array of features during theimhfethat implementing them
on a mobile device would not be feasible. Direct3D also hadatded constraint
of being a closed standard controlled by Microsoft and attithe limited to devices
running Windows. The solution chosen by the industry wasike OpenGL and strip
out all the non-essential components forming an embeddesksiB p. 68], OpenGL
ES [4]. A more recent addition to the field is OpenVG [5], whiskaimed at 2D vector
graphics.

To oversee the standardization of these and other new erab@dedia APIs, a con-
sortium called The Khronos Group was formed. Their missgoto icreate open stan-
dard, royalty-free APIs that enable the authoring and acatdd playback of dynamic
media on a wide variety of platforms and devices [6].

2.2. Mobile Application Platform

Symbian is the leading smartphone operating system (O8)ani2% market share in
the first quarter of 2007 [7]. Itis used in a number of mobileide models by Nokia,
Motorola, Sony Ericsson, Siemens, and others. Symbianigegs\a comprehensive
third-party software development environment open taltpiarty developers.

13

Portability

i i
Application E Application E

; i
Graphics API Graphics API

Figure 2. Separating the application from the graphicsrengiith a standardized API
enables application portability from one engine to another

Symbian OS is based on a real-time nanokernel architedtateptovides process
scheduling and isolation, memory management, device rdtiviéie system services,
windowing, and all other features one would expect from b/ filkdged modern em-
bedded operating system. It has a rich set of APIs that dffeexample, imaging, au-
dio, positioning and internet services. In the context afteegraphics, both OpenGL
ES and OpenVG are supported [8] [9].

In addition to Symbian, a major component in Nokia smart@sois an applica-
tion middleware called the S60 Platform [10]. The S60 Platfprovides the device’s
graphical user interface and the built-in applicationgnfrthe developer’s perspective,
the S60 Platform offers additional services, the most egleof which is the graphical
user interface toolkit Avkon [11 p. 21]. From a vector grajgstandpoint, an interest-
ing recent addition to the platform is the support for Sci@h [12], which decouples
applications from the physical screen resolution. Tedihjic¢his is achieved by draw-
ing the whole graphical interface using scalable vectoplgics (SVG) images.

Due to the relatively rapid development of the industry, rdrege of available Sym-
bian devices on the market is very wide; in the six years Yalg the introduction of
Nokia’s first Symbian-based smartphone, central procgasiit (CPU) speeds have
more than tripled to over 330 MHz, display sizes have reach&dter-VGA (video
graphics array) resolution (320 by 240 pixels) and memopachy has surpassed 64
megabytes [13]. A mobile application developer must ackadge that these numbers
only represent the very high end of devices. Taking the whblass of smartphones
into account, these performance figures will vary greathispresents a considerable
challenge for mobile application development: how to eashat the application will
perform adequately on all intended devices.

2.3. Challenges in Mobile Vector Graphics

Vector graphics and vector graphics accelerators have ine@aduced in mobile de-
vices in a fraction of the time it took for them to appear in coadity workstations.

14

This rapid development has placed a great deal of pressutegany system soft-
ware and bitmap-based application middleware layers, whave not been designed
to benefit from graphics hardware acceleration.

Some aspects of traditional bitmap-based graphics irtesfare particularly poorly
suited for hardware acceleration. An example of such a featuthe action of al-
lowing applications to directly modify the pixel contents graphics images. With
graphics accelerators, image data is often stored in dedicgaphics memory, which
is inaccessible from the application processor. Allowipglaations to modify graph-
ics images directly in such systems results in heavy memosytiaffic, as the con-
tents of the graphics images must be transported back atiddfetween the dedicated
graphics memory and the main memory. Another major sturghdiock is the use
of synchronous graphics operations, which are performatptetely before returning
control to the application. For example, if an applicatined to acquire a copy of the
rendered image, it is forced to wait until the acceleratarfirashed drawing it. Since
high performance vector graphics acceleration oftengelieefficient parallelism, syn-
chronous graphics operations can have a major negativerperhce impact.

In an ideal world, the system software would simply be modifeework better with
hardware graphics acceleration. In most cases, this cherdiine due to the large im-
plementation effort and interest in retaining the binarynpatibility of the platform,
that is, allowing applications written for an older revisiof the platform to work on
newer versions without modifications. This is less of a peabfor proprietary plat-
forms, where the software vendor has full control over &l #pplications, but more
so on open platforms such as Symbian. A common approachtisablward compat-
ibility in new systems is retained through special emutattode, which allows older
unmodified applications to work with the latest graphicsede@tors. This emulation,
however, may come at a performance cost, and it may not alb&agsntirely obvious
which graphics functionality is implemented through theuéation. This poses the
application developer with the challenge of how to steearctd# these performance
pitfalls.

In addition to the system software, the mobile applicatiemedopment tools also
pose a set of problems for the programmer. At the time of mgjtperformance valida-
tion tools for Symbian applications are limited to sourceslelebuggers and sampling
profilers, and therefore reliable performance data is lmabtain. Furthermore, since
a profiling tool only measures activity on the applicatiomgessor, comprehensive
data for dedicated graphics accelerators is not available.

In graphics system integration work, a common situatioma & poorly perform-
ing graphics application is not written by the same person whassigned to debug
the problem. Especially in such cases, trying to analyzethphics operations of an
unknown application solely by looking at its source code iledugger is not a sus-
tainable way of working. Firstly, there are no guaranteeste quality of the source
code, and discerning the internal logic of the applicati@yrne time consuming; sec-
ondly, the parameters of single function calls do not corereyugh information about
the effective graphical content of the application; andlfyné is not uncommon that
the application source code is simply not conveniently latsé, for instance, if the
application was written by a third party developer outsiais.

Experience is also a major issue; a developer with a PC bacgkgris unlikely to
be able to appreciate the special limitations of a mobilaadevWhile the available

15

set of features will make most desktop developers feel aeh&@ymbian devices often
have substantial performance limitations that should tiefad into application design
from the beginning. In the scope of vector graphics, the ntiosting factors are
memory and bus bandwidth, the lack of a dedicated graph@msepsing unit and the
fact that at the time of writing, floating point calculatioas2 commonly performed
with slow software emulation [3].

The vector graphics APIs are also somewhat problematiams®f performance.
One of the virtues of an API is to hide implementation dethiten the application
developer. Conversely, the performance response to diffgraphics content of im-
plementation is often also concealed. With APIs such as GpdaS and OpenVG,
this causes a disconnection from the graphics content téiritaeperformance seen
by the developer. This makes performance estimation of amkrgraphics hardware
very difficult without extensive benchmarking work.

2.4. Vector Graphics and the Perception of Quality

Quality is a term generally associated with the superipoityat least non-inferiority, or
the usefulness of something [14 p. 311]. For the purposdaofhiesis, we can define
a number of characteristics of vector graphics and useractien that contribute to
the quality of an application:

e Fidelity—the graphics should be free of visually distracting actfaand other
flaws.

¢ Fluidness—animated graphics should be performed at a sufficient capgd-
duce the illusion of continuous motion.

e Responsiveness-the application should respond to user interaction witbla t
erable delay.

e Usability—the graphics should not hinder usage of the application.

e Low resource utilization—the application should not consume excessive re-
sources, such as processing capability or memory space wioducing the
graphics.

This enumeration is by no means exhaustive, nor can thel igms be said to be
fully independent; the intent here is to convey a genera mfehe type of factors we
consider when establishing the quality of a vector grapapgdication.

Vector graphics are mainly used in mobile devices to coonstaugraphical user
interface for the person using the device. Since the interfs, by definition, very
visible for the user, any major quality deficiencies in itiMave an effect on his or her
perception of the overall device quality. This kind of diregposure emphasizes the
importance of quality vector graphics in mobile devices.

While jitter and synchronization skew in non-interactivediaehas been shown to
be tolerable to a certain degree [15] and the informatiortestdrof video material is
understood even at a low frame rate [16], latency and lag mrapligcal user interfaces
has a direct impact on the system response time and ultynatethe ease of use

16

of the system [17]. Therefore, minimizing graphics lateacyl jitter improves user
experience.

Traditionally, mobile graphical user interfaces have bewstly static displays of
information due to limited processing power and displaydiare constraints. In such
systems, the display was usually updated quite rarely aseatdiesponse to user ac-
tions, such as menu navigation. While the latency of contisiyoanimated graphics
was not a major quality factor in such a system, the inputaese latency of the sys-
tem has and always will be of paramount importance to a gootep&on of quality.
Additionally, research has shown that animation helps #& gain a more thorough
understanding of presented data, especially if the datpaBat in nature, such as a
hierarchy of menu options [18]. In this light, it is not sugang that that mobile user
interfaces are quickly moving from the traditional statmstructs to animated transi-
tion effects [19] and other dynamic elements. The geneealdtis that non-animated
interfaces are seen as old fashioned and boring, while feasinyated interfaces gather
much more attention [20]. Itis therefore important that ireodevice has proper sup-
port for animated graphics from both the usability and miankeperspective.

2.5. Detecting Quality Problems

Due to the visible role of graphics in user interfaces, quaiioblems can generally be
detected simply by using the device in question; common $ymg such as sluggish
responsiveness, long waiting times, poor battery life aragplgical glitches are hard
to miss. The difficulty lies in turning these subjective meas into concrete metrics
and using them to systematically identify and solve vectaphics quality problems.
An equally important part of the issue is determining whethe problem has in fact
anything to do with graphics.

For animated graphics, a universally understood measutpialty is the frame
rate, which indicates how many times the device display atgd per second. A
commonly considered lower bound for real time animationdsframe updates per
second [21]. When the animation is controlled or triggeredthsy user, a similar
measure of system latency can be used. It indicates thetomeuser input to a visible
result on the screen. In addition to graphics latency, sységency also includes all
other processing done in the system. These two types of tieasuanes are illustrated
in Figure 3.

In the context of mobile application platforms, we must atemsider the power
consumption of graphical processing. Power consumpti@asured in amperes, indi-
cates how much current is drawn from the device battery atengime. Since battery
charge is a finite resource, conserving it should be a topifyid\s graphics are often
drawn several times per second, minimizing their power esagvorthwhile.

In the following sections, we will examine what aspects okater graphics system
have an impact on these measures and how those aspects tadibe. s

17

Frame latency
1 1 1 1 1 1

| —— S ——| 1 1 1 1
(Frame 1 I Frame 2 I Frame 3 I Frame 4 I Frame 5] LI
. 1 1 1 1 1 1
Time >
V —
T System latency T
User activates Menu is
menu shown

Figure 3. Frame latency is defined by the graphics displaytgodhte, while system
latency is the time taken by the system to respond to uset.inpu

2.6. Classifying Quality Problems

Once a quality problem is detected, the next step is to iigadst what factors con-
tribute to it. Quality issues are usually brought on by a coation of various prob-
lems throughout the system, but often one cause can be se¢la dsminating one.
After the most significant quality issue has been identiftezhn be used to plan further
optimization work. Therefore it is advantageous to make thassification process as
efficient as possible.

In this work, we employ a quality problem classification midolesed on the domi-
nating contributing factor:

1. Dominant cause in APl usage patterns

2. Dominant cause in graphics content complexity
3. Dominant cause in graphics engine
4

. Dominant cause unrelated to graphics

Next we examine each problem class in detail and discusskirhbf information
is needed to determine whether a problem belongs in thatpkan class. It should
be noted that we do not strive for a fully automated clasgiboasystem, but rather to
provide a toolset for making the process practical for algiGgpengineer.

2.6.1. Graphics APl Usage

The way an application uses a graphics APl has great conseggian terms of quality.
Quiality problems in this area often stem from the fact thavath OpenGL ES and
OpenVG, and in vector graphics APIs in general, there areymays to accomplish
a given goal. For instance, drawing a forest scene could be by drawing each tree
separately or by drawing the whole forest with a single dra¥l; ¢he graphical end
result is the same for both methods, but the performance & hkely superior in

the second case. Another example is the usage of certaihreyrous API functions,

18

which may have significant performance costs on hardwaghgraaccelerators while
having a much lower overhead on software renderers.

Analyzing the API usage pattern of an application begingloking at the sequence
of API function calls executed by the application. The ttiadial way of doing this is
by manually reviewing the source code of the applicatiompdfience with embedded
graphics software integration has shown that this is ari@n@g¥e way of working. In
general, it is anything but straightforward to discernaiely how an application will
behave merely by looking at its source code. Furthermorepine cases the source
code may not even be conveniently available. While an intsedebugger may be
used work around this limitation, it is an impractical waywedrking if the number
of API calls is large. Therefore, a more effective way to abthe API call sequence
is needed. As embedded devices are unsuitable for exteasalgsis work due to
processing power and user interface constraints, usingra pawerful workstation
for analyzing the API call sequence should also be possible.

Graphics API usage analysis is also needed to determinatise of visual render-
ing errors. The error could be caused by erroneous API usagéaalt in the graphics
engine. In either case, the API call trace is needed in oolisotate the error.

Obtaining the API call sequence is only the first step, howeVée resulting se-
guence will also need to be analyzed and processed to igemtyf possible quality
problems. As a common graphics application can executesimals of graphics com-
mands per second, manual analysis of the often enormousraed is not always
feasible. Practical tools for examining API call sequerarestherefore also necessary.

2.6.2. Graphics Content Complexity

The graphics content of an application comprises the geapprimitives drawn dur-
ing its operation. The graphical primitives in this conteah be elementary geometric
shapes such as points and triangles or aggregations opiewtiapes, such as a com-
plete three-dimensional object.

The key thing to consider when evaluating graphics conteality is whether or not
it presents an appropriate workload for the graphics enghheommon mistake is to
model graphical objects with too many details without reigarhow large they appear
on the device screen. Another often-made oversight is todiesv a complex object,
only to later cover it completely with another object.

Estimating the workload produced by graphics content cabased on character-
izing various empirically measurable aspects of the cdnt&rcanonical example of
such a metric is the number of triangles used to build theewsaigraphical objects.
Once the metrics have been calculated, they can be usedy® v well the content
matches the capabilities of the underlying platform. Addially, the same content
features can be used to develop synthetic benchmarks witthing content features.
The advantage of synthetic benchmarks in comparison tgusgular applications for
benchmarking is that their content features can be moré/gmsiameterized to obtain
content variants with extrapolated complexity.

Calculating detailed content statistics is traditionalgnd with the help of a spe-
cially instrumented graphics engine. As of today, thereistnch comprehensive tool

19

for obtaining such measurements from mobile graphics egipdins. For the purposes
of graphics quality analysis, one is needed.

2.6.3. Graphics Engine Performance

In order to make meaningful judgments about graphics com@mplexity, one also
needs to establish the performance profile of the graphmgimehat will do the actual
rendering work. This is often done by running special beretsiprograms that draw
some synthetic graphics and measure the performance afgpkigs engine. The term
synthetic is used here to differentiate the graphics camtea real application versus
the graphics content created specifically for benchmarkimgposes. The problem
with this approach is that the content characteristics offsstic benchmarks may not
necessarily match those of real-world applications. Thathe benchmarks could
essentially be measuring the wrong thing. These syntheticlimarks can be made
better by basing their design on measured content featsmgadained in the previous
section.

Actual graphics applications can also be used for benchngpurposes, but that
will usually require programming special measurementin@stinto each used appli-
cation. Furthermore, the tested graphics engine may ontig o prototype hardware
that is incapable of running regular applications. Due &s¢hlimitations, using real
application content for benchmarking mobile graphics eegjiis usually impractical.

Accurate and reliable engine performance profiling benkbta the use of both real
application graphics content and content feature-basetthatic benchmarks.

2.6.4. Quality Problems Unrelated to Graphics

The final class of quality problems contains the problems fidboutside the scope

of vector graphics. If the graphics API usage patterns amdet analysis indicate

no adverse issues, a quality problem can be considered taused by some other
component in the system or by the application itself. An gx@nof such a problem

is an application that is performing so many internal caltahs, that it is unable to

submit graphics commands to the graphics engine at a higighmate. Problems that
fall under this class should be dealt with traditional saftevdevelopment tools such
as debuggers and profilers.

2.7. The Graphics Quality Analysis Toolkit

From the previous discussion, it is apparent that theredatgoom for improvement
in the process of vector graphics quality analysis. Forrgason, we set forth to build
a special set of tools for assisting the solving of vectopbies application quality
issues and estimating graphics engine performance. Theabgctive of the toolkit

is to make it as easy as possible to examine the graphics @ddiy a mobile vector
graphics application in great detail. The toolkit also cffsupport for benchmarking
graphics engines using real and synthetic graphics contémte toolkit is mainly tar-

20

1 Run application 3 Analyze trace

2 Transfer trace
/

EETE——— \

e
L
Molglle Workstation
device

Figure 4. The general workflow for the Graphics Quality AsedyToolKit is to trace a
vector graphics application on a mobile device and to amallje captured trace in a
workstation environment.

geted at the OpenGL ES and OpenVG APIs and applicationsngrom the Symbian
platform, it is also designed to be portable to other APIs@latforms. An important
requirement is offline analysis, since extensive develayinverk on a mobile terminal
is impractical due to processing constraints and userfagedimitations. The desired
general workflow of the toolkit is illustrated in Figure 4.

Based on these high level requirements, The Graphics Quatiayysis Toolkit is
designed to comprise the following components:

1. A Tracer for capturing all OpenGL ES and OpenVG graphics commands ex-
ecuted by a Symbian application. The commands will be savedttace file,
which can be copied to a workstation for further analysis.

2. A Trace Playerfor repeating the captured graphics commands. The player ca
be run on a variety of platforms with any compatible grapleicgine.

3. ATrace Analyzer for examining and manipulating the graphics command trace
files. The analyzer is used on a Windows workstation.

4. Instrumented OpenGL ES and OpenVG graphics engine$or extracting de-
tailed content statistics from trace files.

The overall configuration and interaction of these comptsisrshown in Figure 5.

2.8. Previous Work

The following sections present a survey of graphics reseaotk that is related to the
domain of vector graphics quality analysis.

21

| ‘ —_— Tracer —

Application Graphics
engine
U
N
Trace file
Trace Trace
analyzer player
Instrumented
graphics
engine

Figure 5. The main components of the Graphics Quality Anslysolkit are the
Tracer, which captures graphics commands ttvagce file; the Trace Player, which
replays captured graphics commands andlilaee Analyzer, which uses ainstru-
mented graphics engingo extract information from a trace file.

2.8.1. Graphics Command Tracing

The method of unintrusively tracing graphics calls fromgyeons was formally intro-
duced by Dunwoody and Linton [22]. In their design, the Oper@®mmands of a
graphics application are captured in a binary trace file imagplgics API neutral lan-
guage for later analysis. Their tracer masquerades as gtens\graphics engine by
providing an identical binary interface to the applicatiofhe inherent advantage of
not requiring any instrumentation of the application codthe graphics engine was an
important reason for choosing the same method of graphitgaaing as the funda-
mental basis of our work. Our approach, however, differfiat e keep the graphics
command abstraction level at the level of individual APlisahstead of specifying

22

a higher level intermediate language. This ensures thatoutd capture the exact
behavior of the traced application as closely as possible.

The same basic technique of tracing has also been utilizétubyphreys et al., in a
system called Chromium [23]. Chromium is an extensible Open@hmand stream
processing library, which provides a virtual OpenGL graghengine implementation.
The captured OpenGL API calls are routed through a networBRI)s or Stream
Processing Units. Each SPU can perform arbitrary procgsdithe command stream.
Example uses include diverting OpenGL graphics rendenrgydluster of computers
and compositing the resulting image on a local display. Cluwonhas also been used
in performance estimation [24], where an OpenGL trace isl tigalrive a simulated
graphics processing unit model.

Chromium has a very similar architecture to the tracer in gatesn, and thus could
have served as a basis for our implementation. Instead, agedb implement a cus-
tom tracer through code generation. This enables us to supparly any C-based
API, such as OpenGL ES and OpenVG, while Chromium would haeztlly offered
support only for OpenGL. Additionally, our platform porthly and performance re-
guirements on embedded systems also necessitate a custoeforused solution.

The OpenGL API defines a built-in mechanism for tracing amagiplg back graphics
command sequences or display lists [25]. Applications eguest that several com-
mands are compiled into a display list, which can be lateygaaback with a single
command. Display lists can be used to improve performarcthey enable applica-
tions to redraw commonly used graphical objects with mithiaverhead. As display
lists are immutable, the graphics driver can preprocess tbatents to improve ef-
ficiency. From the application’s point of view, however, &y lists are opaque and
no information about the contained commands can be rettievetored outside the
application. Our approach differs in that we make the cdstehtrace files explicitly
available for detailed analysis and processing.

2.8.2. Graphics State Tracking

OpenGL ES, OpenVG and other similar graphics APIs are esdlgrdtate machines,
the state being the active rendering settings enabled igraphics engine. This graph-
ics state has a very direct relation to graphics performasioee different rendering
settings produce different workloads for the graphics eeagiFrom a vector graphics
quality analysis point of view it is therefore imperativekiwow the graphics state used
to draw primitives.

Graphics state tracking is commonly used in distributecearate graphics render-
ing, where it is beneficial to minimize the number of rendgr@@mmands sent over
the network. The graphics libraries themselves also oftepl@y some form of state
tracking in order to avoid needless expensive round tripthéographics hardware.
State tracking is also needed for sharing the same GPU betwekiple applications,
where the graphics state of an application needs to be sadddter restored to allow
other applications to use the GPU in between.

A state tracking application by Buck, Humphreys, and Hammgl2é] employs a
hierarchical state tracking model that can be used to $@itréndering work of one

23

application to multiple rendering nodes. The Chromium sys#éso offers a state
tracker for satisfying application state queries locatlyaddition to other uses.

State tracking also plays a very central role in our worknktdes many of the key
use cases of the Tracer and the Trace Analyzer, such astegré@me sequences
from longer traces and pinpointing quality problems in é®cSince a requirement for
the toolkit is to be graphics API-neutral, the same prireiglso applies to the state
tracker. This lead us to develop a generic tree data steictwitable for describing
the state of EGL, OpenGL ES, OpenVG, and other similar APhés Thethod greatly
reduces the amount of work for adding new graphics APIs tegsitem in comparison
to hand-written state tracking code as used by Buck et al.,i@iora and others. Our
method also ensures that the traced graphics calls are rdbfi@doin any substantial
way in comparison to the original application. This is imjaort, since our system
is designed for reproducible application debugging andwamgtended modification
of the graphics command stream might change the behavidreofjtaphics engine
substantially.

2.8.3. Graphical Debugging

NVIDIA PerfHUD [27] is comprehensive interactive DirectZibalysis tool by NVIDIA.
It allows the user to suspend a running graphics applicatmiexamine detailed statis
tics from different units of the graphics pipeline. Additally, the user can modify the
rendering settings, shader source code, textures and atthibutes of the inspected
application in real-time. NVIDIA PerfHUD is available for ietosoft Windows and
works only with NVIDIA graphics hardware.

GDEBugger [28], a product by Graphics Remedy, is an interagfraphical debug-
ger for examining the execution of OpenGL and OpenGL ES pwogr It provides a
very broad range of statistics on the running program, ssdhe executed graphics
calls, graphics state variables, performance graphs antdes and the relative load of
the different graphics pipeline stages. It is a developenily tool indented for quick
pinpointing of errors and performance issues in graphipalieations. GDEBugger
runs on the Microsoft Windows and Linux operating systems.

GLIntercept [29] is also a similar, albeit less sophistchtool. Rather than a full-
fledged debugger, it is more of a graphical event logger. ntsave all the OpenGL
commands made by an application to a file, along with extra slath as framebuffer
snapshots and texture images. It also has a mechanism foducing interactive
analysis features, such as free camera movement around tipephics drawn by the
application.

A relational graphics debugger introduced by Duca et al.] {8@uses more on the
data extraction stage of the debugging process. Theirmysstduilt on a powerful
structured query language (SQL) -based language that casdoto extract data from
all stages of the graphics pipeline. While the debugger cawansimple queries
directly based on submitted graphics commands, more congpleries are answered
by replaying a portion of the graphics commands throughraatizally instrumented
shader programs.

These and other commonly used graphical debugging sotuiom based on live
interaction with the debugged application. Our approathiisstead focus completely

24

on offline trace analysis. In the context of embedded appbos, offline analysis

is essential since the target device often lacks the negepsacessing power and
usability for interactive graphical debugging. Workinghvirace files rather than live
applications also has the added benefit of providing comlyleepeatable graphics
sequences; in effect, it separates the examined qualitg fsem the application. Off-

line analysis also facilitates remote debugging, in whinghéxecution environment and
the application can be physically separate from the aragmsiironment. Our system
also adds the possibility of transforming the trace file idifferent formats, such as
plain text, portable C code and numerical data for statisaoalysis.

2.8.4. Graphics Workload Characterization

Graphics workload characterization is the process of aeyigoncrete numerical fea-
ture points from a sequence of graphics operations. Thetioteis that these statistics
can be used to gauge the performance characteristics anddfral complexity of the
examined graphics sequence.

Workload characterization is a useful technique for hardweendors, since they
can use data acquired through it to evaluate new graphidsvaae designs. In effect,
the vendors can estimate how a given hardware implementatiold perform when
given content similar to that which is used for workload ewderization.

Workload statistics are useful also beyond hardware dgsigan application by
Wimmer and Wonka [31], a rendering time equation is derivedhfvarious content
measures and used to estimate the rendering latency of higgagrene before it is
drawn. They demonstrate the use of the equation for maingag minimum frame
rate in interactive graphics applications by scaling tlvellef graphics detail.

The common problem in all workload characterization is degj what to measure.
This is difficult because the actual workload of particulaaghics content depends
heavily on the underlying graphics renderer architect@kiueh and Lin [32] intro-
duced a set of 3D workload characterization statisticsdasean analysis of the 3D
graphics pipeline. To obtain the measurements, they usedraatly-instrumented
version of the open-source Mesa OpenGL graphics librameSaf the measurements
they used were the percentage of culled triangles, the gedriangle span width and
the depth complexity or overdraw amount of the scene. Thaa idas extended by
Mitra et al. [33] by also taking into account low level harde@haracteristics such as
texture memory traffic and chunked rasterization.

The previous research into graphics workload estimatioircharacterization is used
as a basis for the trace file content features that can bela@dwvith our system. Our
objective was to build a system that provides the featurest m@mmonly used for
workload estimation. While previous research only coversdfdimensional graphics,
our toolkit also provides content features for two-dimensi vector graphics.

25

3. VECTOR GRAPHICS APIS

An application programming interface or an API is a prograngrabstraction that
enables clean and systematic code reuse. An API is es$emtiabntract between
a library of code and a program that uses the code. The APIfigseall messages
and data flowing from the program to the library and vice vershe power of the
API concept comes from the fact that the implementation eflitbrary is essentially
undefined from the application’s point of view, as long ashidas by the interface
specified by the API.

An API is usually targeted at a specific programming languablee C language
is a popular choice, since it is supported nearly univeysaild C-based libraries are
usable in many other higher-level languages through wrapaed other extension
mechanisms.

The purpose of a vector graphics API is to allow programs tawdmages using
vector graphics. As shown in Figure 2 on page 13, a chiefeviofua such an APl is to
insulate the application from the physical graphics haréw#vith a standardized API
in place, applications can be moved from one graphics haedt@aanother with little
or no changes. The lack of such an API leads to each vendoirdgfiroprietary ways
of controlling their graphics hardware, which has the dffefccoupling applications
tightly with a particular piece of hardware.

Most vector graphics APIs also strive to hide the functiotiffierences between
different graphics hardware by mandating a common featiréhat must be present.
If a particular piece of hardware does not directly suppgragicular feature of the
API, it is usually required that the missing feature shoutdelnulated via software.
This makes it easier to write portable applications, butasimmpossible to know
if a particular graphics operation sequence triggers slafiware emulation in some
platforms.

In this chapter, we will look at the present state and evotutf a number of two-
and three-dimensional vector graphics application prognang interfaces. As the
main subjects of this thesis, OpenGL ES and OpenVG are thesepted in more
detail. In addition, a binding API called EGL is introduceéithe chapter closes with a
discussion on the performance aspects of the presented APIs

3.1. Evolution of 3D Graphics APIs

In the earlier days of vector graphics, a standard vectgslgea APl was nowhere
to be found, and unsurprisingly, the need for common APIsisaofaced. By the
late 1980s and early 90s, a hardware independent API calé@® was gaining mo-
mentum. The name stood for "programmers’ hierarchical aat@re graphics system".
PHIGS was a relatively high level API, where graphics wedpced from hierarchi-
cal data structures of 3D objects [34]. A company called $BGlever, saw PHIGS as
a threat to its line of graphics workstations. At the time,I'S@&achines were using
a proprietary graphics API called IRIS GL, which was an abiatéan for "integrated
raster imaging system graphics library”. To ensure its eelee in the market, SGI
started licensing an open version of IRIS GL to its compeditorhis new graphics
library, introduced in 1992, was called OpenGL [35].

26

In comparison to PHIGS, OpenGL's approach to graphics wigareint in a funda-
mental way. Vector graphics APIs can be roughly categoriizedtwo distinct groups
based on the way the graphics are constructed. PHIGS is anpéxaf a retained
mode API, where the complete description of the graphicsesce first given and
then drawn with one command. Retained mode graphics APIsvddahigh level
constructs such as objects and their hierarchies. A retamede graphics library is
usually built around the concept of a scene graph, whichritescthe drawn graphical
objects and their relations. The original OpenGL, on theoktand, was an immediate
mode graphics API. It differed in the sense that the avalgbhphics commands were
very fine grained; a triangle, for instance, was drawn by ifyiag the coordinates,
colors and other attributes of its vertices, each with ite @1 call. This provides ap-
plications with a very high level of control over the proddagaphics, although many
more steps are required to draw them.

OpenGL's low level approach enabled applications to atbaitter performance by
optimizing the graphics commands sent to the graphicsriibré also enabled the
drawing of graphics that could not conveniently be describeing a hierarchical
scene graph. These advantages, combined with the APIg/eetatnplicity, lead to
OpenGL'’s quick dominance of the 3D graphics APIs. [36 p. 138]

Microsoft, one of the early adopters of OpenGL, opted irstwacreate their own
proprietary, even lower level vector graphics API calledddt3D. Originally, Di-
rect3D featured both a retained mode and an immediate matiheformer was soon
abandoned due to lack of developer interest. The initial @diste mode of Direct3D
was similar to OpenGL, but at a lower level and with a much mestricted feature
set; the first version of Direct3D, released in 1996, had ldgezs essentially filling
command queues for graphics chips. This cumbersome ingevias later upgraded
with higher level convenience functions. [37]

Direct3D has since become the dominating graphics API ctmputer games in-
dustry. Its wide adoption can be explained in part with theuson high performance
from the start and the fact that the reduced feature set nhadsier for hardware ven-
dors to produce Direct3D-compatible video cards. Howeagrideo games graphics
have become increasingly demanding, the feature sets lofictct3D and OpenGL
have evolved to quite an equal standard [38, 39].

More recent developments in graphics hardware have brabghdeprecation of
the traditional fixed function pipeline in favor of prograrabie shader units. Modern
versions of both OpenGL and Direct3D allow the user to exespiecial programs
on the graphics processor to dynamically control the shapégrial, and composition
of objects [38, 39]. As neither OpenGL ES 1.1 nor OpenVG suppmgrammable
shaders, they are not discussed here in any more detail.

Both OpenGL and Direct3D have seen embedded variants, n@pelgyGL ES and
Direct3D Mobile [40]. In 2004, Symbian became the first endmtiplatform to of-
fer an OpenGL ES 1.0 graphics engine accessible to thiry plastelopers with the
introduction of the Nokia 6630 smartphone [41].

27

3.2. Origins of 2D Vector Graphics APIs

A dominant force in the development of 2D vector graphichésgrinting press, where
the high resolution of the medium is a strong justificationusing a vector-based rep-
resentation. The industry standard for printing 2D veataages is Adobe’s PostScript.
Introduced in 1984, PostScript is not merely an API, buteatin executable, Turing-
complete language with well-integrated graphics suppé2i

Drawing in PostScript is based on the concept of paths. Aigatltollection of line
segments and curves. To produce graphics, the area insath sfilled or the outline
of a path is traced or stroked. This same concept is also thie fia most other 2D
vector graphics APIs.

As computer display resolutions and processing capasilitave increased, 2D vec-
tor graphics also started seeing interactive applicatiolienately leading to the de-
velopment of standard 2D graphics APIs. One of the earliesuoh APIs was an
evolution of PostScript called Display PostScript. It exde the PostScript model with
better support for the relative low resolution of computispthys and includes opti-
mizations for better performance. [42]

As interpreted domain languages, PostScript and its damgare difficult to in-
tegrate to a C-based application. Outside dedicated pgirguipment, their robust
hardware acceleration is not common. To overcome thesesssunumber of more
traditional declarative APIs have also been developedfodyrcing 2D vector graph-
ics. Graphics user interface systems such as Windows GDK¢#8phics device in-
terface), Xlib [44] and Symbian GDI [45 p.487-509] commoimplement a limited
subset of the PostScript imaging model, although untilmdgehey have been more
geared toward pixel-oriented graphics for performanceara. Common limitations
in such toolkits are the lack of free graphics transfornraéind resolution dependence.
However, as modern applications are more demanding in tefgr&phics operations,
Ul toolkits are quickly transitioning to using more robugictor graphics techniques
[46, 47].

Of the more recent APIs, Khronos Group’s OpenVG is the motdbie one from
the perspective of this thesis. OpenVG is a low level, Opeis@le C API, which is
based on the same concept of filling and stroking paths aSewst. It was introduced
in 2005 and designed with embedded systems and hardwaileratios in mind. One
of its main selling points is the support for popular medienfats such as Adobe’s
Flash and W3C’s SVG. [48]

3.3. Graphics Primitives

A key concept in any graphics API is the fundamental grapprositive that is used
to construct everything seen on the screen. Some basic geomemitives for 3D
graphics are points, lines, triangles, and polygons. Ofeh&iangles are most com-
monly used, because they can be used to approximate almokirahof natural ge-
ometry by being grouped into meshes. Triangles also havéntpertant property
of always lying in a plane. This makes rasterizing them ini@Is a straightforward
operation and easily accelerated in hardware. In confraktgons can be shaped arbi-

28

trarily, even in ways that cause them to self-intersects 1$why support for polygons
was not included in OpenGL ES when compared to OpenGL. [38]. 6

The 3D objects constructed from geometric primitives camiagle to look more
realistic by simulating different materials and lightinffeets. A common technique
Is texture mapping, where a two-dimensional image is dtezgtcover a 3D object.
OpenGL ES provides support for modeling the effects of treas® some additional
physical phenomena. [49]

Primitives for two-dimensional rendering include poinisgs, circles, rectangles
and curves. A special type of curve called the Bézier curygisally used to construct
round shapes that will appear smooth regardless of thele.s€penVG supports all
of these primitives.

Since 2D vector graphics are not primarily about simulatheyappearance of real
objects, OpenVG does not directly try to simulate differdegtiting conditions or ma-
terials. Instead, it applies the concept of a paint, whiah loa used to color a drawn
shape with a single color, a color gradient or an arbitrarggmpattern. [48]

The process of composing images with these fundamentahigsaprimitives and
operations in both OpenGL ES and OpenVG is illustrated imrad.

In OpenGL ES, a number of 3D coordinates called vertices estecibnnected with
triangles to produce meshes. In Figure 6, vertices are demafilled circles. These
meshes are then drawn as seen from a specified camera pasthaptional lighting,
texturing, and other effects.

In OpenVG, a path is first defined using concatenated line satgmor curves. The
boxes shown in Figure 6 are the control points for the pathe Fdth is then stroked
and filled using specified paint styles. OpenVG also allovesube of image filters,
such as blurring, to post-process the rendered image.

In vector graphics APIs, the drawing commands and other slatbanitted by the
application flow through a network of components called trepgics pipeline. The
term pipeline is used, because these constructs are useajlyserial in nature and
most of the data flows through the same path. Although the ocaemts or stages of a
pipeline are arranged serially, the stages themselvesayguarallel in nature and can
often work on different parts of the submitted data simwdtaursly.

In the following two sections, we will examine the pipelingustures of both
OpenGL ES and OpenVG in more detail.

3.4. OpenGL ES 1.x Rendering Pipeline

The high level structure of the OpenGL ES 1.x rendering jmgels illustrated in
Figure 7 [49 p. 11]. The main components are:

1. Per-Vertex Operations and Primitive Assembly: The rendering operation be-
gins here with the application submitting a number of vediand the set of
graphics primitives to be assembled using these verticee ApenGL ES li-
brary then transforms these vertices, based on where tivi@Miamera is placed
and calculates which produced primitives are visible. Tifexés of lighting and
fog are also calculated for each vertex here. [49 p. 11]

29

OpenGL ES

®
y
ZX@D@@@

OpenVG

Figure 6. OpenGL ES and OpenVG images are composed of regpkotdamental
graphics primitives: the triangle and the path.

API Per-Vertex

Operations
Rasterization

Per—Fragment Framebuffer
Operations

Primitive
Assembly

Texture
Memory

Pixel
Operations

Figure 7. The stages of the OpenGL ES rendering pipeline.

30

2. Rasterization: This stage converts the visible primitives into a numberarfrfe-
buffer elements called fragments. Each fragment corredspaith a single pixel
in the framebuffer. The collection of fragments for a prikgtis essentially the
image of the primitive on the framebuffer. The color of a freant can be de-
fined through the vertices making up the primitive or textassigned for the
primitive. A technique called antialiasing can be used toastin the edges of
rasterized primitives by taking into account that a patéicpixel may be only
partially covered by the primitive. [49 p. 11]

3. Per-Fragment Operations: Finally, the produced fragments are written to the
framebuffer to produce a visible image. Each fragment isweoessarily written
as is; semitransparent fragments can be blended or mix&dfragments that
are already in the framebuffer. A depth test can also be usddtermine that
an existing fragment in the framebuffer is closer to the @eweading to the
new fragment being discarded. The visibility of individdedgments can also
be controlled based on alpha color values with the alpharesttingular regions
with the scissor test, and arbitrarily shaped areas witlstiecil test. [49 p. 99]

4. Framebuffer: The framebuffer is a two-dimensional pixel store that walhtain
the final rendered image. In addition to visible color infation, the framebuffer
can store additional attributes for each pixel, such asresspaency factor or
alpha component, the depth or distance from the viewer, terecs value that
can be used to limit drawing to a particular area. [49 p. 99]

5. Texture Memory: Texture memory is used to store two-dimensional images
called textures, which can be applied to the surface of dralyacts. Texture
memory is highlighted as a distinct component, because ridweae accelera-
tors it is often implemented with dedicated memory embediddue accelerator
itself. A higher rasterizing performance can be attainedguthis approach in-
stead of accessing texture data in the main system memdtweBe engines can
also benefit from this design, since the data in the textun@ong can be spe-
cially formatted for optimal read performance. Using datkcl texture memory
requires a separate texture-uploading step, in which texdata is transferred
from application memory to the texture memory. [49 p. 72]

6. Pixel Operations: In some cases, more direct access to the framebuffer pixels
is needed. One example involves clearing the whole franfebtad a particular
color before starting to draw new primitives. Some appidre might also need
to read back a portion of the framebuffer for further process This pipeline
component enables such pixel-level operations. [49 p. 109]

3.5. OpenVG 1.x Rendering Pipeline

The overall structure of the OpenVG 1.x rendering pipelmédlustrated in Figure 8
[48 p. 4]. The different stages of the pipeline are:

1. Path, Transformation, Stroke, and Paint Setup: To begin drawing, an ap-
plication constructs one or more paths using OpenVG commagch path

31

Path, Transformation Stroked Path Transformation Rasterization
Stroke and Generation
Paint Setup

Clipping and Paint Image Blending and
Masking Generation Interpolation Antialiasing

Figure 8. The stages of the OpenVG rendering pipeline.

consists of one or more segments. These paths may be orieypteetting a
transformation matrix, which specifies how the viewer isifpased above the
drawing plane. The stroke and paint attributes can be setrtval whether the
drawn shape is filled, or only the outline of the shape is drawboth. Stroking
also controls the thickness of the shape’s outline, whiletpey defines the color
or pattern used to draw the shape. [48 p. 5]

. Stroked Path Generation: If the application specified that the drawn shape is
to be stroked, this stage generates a new virtual path theifigs the area inside
the shape’s outline. This way, the rest of the pipeline odgds to deal with
filling the area inside a path. [48 p. 5]

. Transformation: This stage moves and transforms the path to correspond with
the transformation matrix set by the application. [48 p. 5]

. Rasterization: Similar to the rasterization step in OpenGL ES, this stadge ca
culates which framebuffer pixels are inside the drawn sh@yenVG also has
provisions to calculate partial pixel coverage values tdquen high-quality an-
tialiasing. [48 p. 5]

. Clipping and Masking: The drawn shape can be restricted to a particular area
of the framebuffer using a mask or a rectangular clippingoreg This stage
removes the pixels that do not coincide with the mask or tippiclg region. [48

p. 6]

. Paint Generation: This stage calculates the color of each of the shape’s pixels
based on what type of paint was used. The different typesinfgare solid col-
ors, linear gradients, radial gradients and image pattéims step is analogous

to the texturing and lighting functionality of the OpenGL .H&8 p. 6]

. Image Interpolation: If the drawn shape was an image, this stage performs
filtering to minimize the blockiness of the rasterized imag8 p. 6]

. Blending and Antialiasing: Finally, the produced pixels are mixed together
with those already in the framebuffer. Blending and antsatig can be used

32

/R 'e
| OpenGLES | | OpenVvG
J |

-

~ -
~ -
St enam="

GLES
Context

VG
Context

Native windowing
system

Figure 9. EGL provides a way to initialize resources for lOglenGL ES and OpenVG
and coordinate their drawing with the platform’s native dowing system. It also
facilitates sharing of rendering resources across APIs.

to draw semitransparent shapes and to ensure that the efdties shape are
smooth. [48 p. 6]

9. Framebuffer: Similar to OpenGL ES, the OpenVG framebuffer houses the fi-
nal rendered image. It also supports most of the equivaigat pperations. In
addition, it supports a number of filtering operations sushlarring and convo-
lution. [48 p. 116, 121]

3.6. Native Windowing System Integration

OpenGL ES and OpenVG provide ways to draw vector graphicsthay lack the
ability to determine where the graphics should actually gmdEven if the application
is only interested in drawing on the physical display of tleeide, it still needs to use
an additional API to make that choice. This API is called EGhe role of EGL in
relation to the graphics engines can be seen in Figure 9nisiée EGL is the glue
that binds the graphics engine to the platform’s native wwidg system. For this
reason, EGL and other similar APls are commonly called bigdPls.

EGL is used to prepare a data structure called the graphigexdoto APIs such
as OpenGL ES and OpenVG. The graphics context defines, fanice, the output
surface and its configuration for the graphics engine. Thdigoration of a surface
can be used to adjust the quality of the produced graphicsongnother things, it
specifies the number of bits of color fidelity to use when remmgeand whether or not
use antialiasing to smooth the edges of geometric pringitive

EGL provides three different types of surfaces for applcatise. The most com-
monly used one is the window surface, which directly mapgtiaghics to a window
in the underlying platform’s native windowing system. Windsurfaces also use back
buffering, which is a way of ensuring that graphics do notegymn the screen until
the application indicates that the current frame is readys Telps to eliminate flick-
ering graphics that would normally be seen if the screen datgd while the graphics

33

are still being drawn. When displaying graphics on the sgraemindow surface is
usually the most straightforward choice. [50 p. 25]

The second surface type is a pixel buffer or pbuffer surfagebuffer is an off-
screen surface, and therefore graphics rendered to a plodfeot appear directly
on the screen. Pbuffers are typically used when a native amiimy system is not
available, or when mixing rendered graphics with other Qieg APIs that are not
explicitly compatible with OpenGL ES or OpenVG. [50 p. 24]

The final available surface type is the pixmap surface. Madatawing systems
provide a pixmap object, which is simply a picture that cardksvn among the user
interface controls in a window. A pixmap surface is a speyipé of surface that can
direct the rendering output of a graphics engine to suchigenpixmap. This pixmap
can then be used as a part of a graphical user interface. B0 p.

The different EGL surfaces and configurations have impoitaplications for ap-
plication portability. Of the three surface types, only fiets are universally sup-
ported. Certain configuration features such as antialiasiag not be available on
every platform. Applications written with portability inimd should therefore strive
to adapt in the absence of such features. Surfaces and aeniogns also have an ef-
fect on application performance. In general, window swg$atave significantly better
performance than other types of surfaces due to the factitbgtare double-buffered
and therefore allow the graphics engine to asynchronousti wn multiple frames at
once. Double-buffering ~ can also eliminate the overheambp§/ing the surface pixels
on the screen, as the display controller can simply dispteeyad the buffers while the
graphics engine is rendering to the other one. [36 p. 261]

EGL can also be used to share certain types of resources agnaplgics engines.
For instance, a picture rendered with OpenVG could be usedi@gture in OpenGL
ES. While this type of sharing could also be accomplished Ipfi@{y copying the
OpenVG framebuffer pixels to an OpenGL ES texture, such amatjon could incur
a significant synchronization penalty and pixel data trassion overhead between
the graphics engines. Therefore, applications shouldestd use the functionality
provided by EGL for these purposes. [50]

3.7. Performance Factors

The relatively low level of both the OpenGL ES and OpenVG Aptisvides applica-
tions with a great deal of power in the form of control over graphics engine; the
application can decide what it should draw and when. Thisguptvowever, comes
with the added responsibility of making sure the renderingcess is efficient. In
contrast to higher level scene graph APIs, in OpenGL ES areh®@@ it is the ap-
plication’s responsibility to make sure not to, for instan@waste processing cycles by
needlessly drawing complex geometry only to cover it latghwther objects. This
fine grained level of control is the source of many perforneaauied quality problems
in OpenGL ES and OpenVG applications.

The mapping from graphics content to performance is notaagsttforward matter.
This is because the graphics engine is in effect a black both&application; neither
OpenGL ES or OpenVG specifies the inner workings of the endnierather only the
inputs and outputs. The obvious benefit of this approachaisghaphics engine ven-

34

CPU

' ' ' '

' ' ' '

' '

'

[Frame N [FrameN+IIFrameN+ZIFrameN+3] :

Il:agtslform and (Frame N - II Frame N](Frame N + IIFrame N + ZIFrame N + 3)
ighting

'
'
'
'
Frame N - 2)(FrameN 1)[Frame N IFrameN+1 FrameN+ZIFrameN+3)
)
Frame N - 3](FrameN 2)(FrameN 1)[Frame N IFrameN+IIFrameN+ZIFrameN+3)
'

. . .
i A
Time 1 1 ! 1 >

Rasterization

Presentation

Figure 10. On hardware rendering architectures, indepemileeline stages can work
on different graphics frames concurrently.

dors are free to experiment with novel rendering algorithonisnprove performance.
From the application developers perspective, a more uraddsieffect is that partic-
ular graphics content will have a radically different penfiance profile depending on
the graphics engine used. Even with this degree of freedeefuligeneral guidelines
for better performance can be still defined.

Probably the most dramatic difference in performance carsd®en between a
software-based engine and a hardware graphics enginewg®efengines are often
limited by the speed at which they can rasterize pixels, @afpe at higher display
resolutions. On such architectures, it is advantageousnit the graphics content
to its bare minimum. The old computer graphics adage thatas$test way to draw
something is to not draw it at all is as valid as ever.

Graphics hardware, on the other hand, may be able to dravitpesimany orders of
magnitude faster, but their performance limitations megkd be much more complex.
Itis very important to realize the extensively asynchraoature of GPUs. In addition
to the different pipeline stages working in parallel, theimmapplication CPU is free
to do other processing while the GPU is busy rendering. Tevsllof parallelism is
illustrated in Figure 10 [36 p. 106]. Notice how the level @rallelism extends to
cover a full frame instead of just one rendering operatidthd application performs
graphics operations that interfere with data dependenteedlifferent pipeline units,
it may lead to the whole pipeline performing synchronoudlythe pipeline in the
previous example was synchronous, its timeline would laoklar to that of Figure
11 [36 p. 106]. The rendering throughput has decreased bygtarfaf four when
compared to the parallel scenario.

Possible ways to induce a data dependency to the pipelimdedmceading back
framebuffer pixels to the CPU memory, combining accelerassztor graphics with
native window system rendering, or modifying existing drnap resources such as
textures or paints while they are being used. What makes tigsm@tions so treach-
erous is that on software renderers, they do not usuallyecany unexpected drops in
performance, and thus the performance problems will onlgifest themselves when
the application is moved to a platform with a graphics ace¢te. However, due to
the high performance of GPUs relative to software implemugors, an application
using synchronous commands might still perform better ari suplatform, but the
full potential of the GPU would still not be utilized.

a b wNPE

No o~ owWDNPRE

35

CPU

Transform and
Lighting

. , .
: i :
. 1 .
, i ,
| FrameN +1 |- H
: i :
A |
! Frame N +1 | !
1 \ 1
: i :
. 1 .

. .

\ .

.

! .

. .

, . .

. .

Frame N - '

. .

. . I

. .

! Frame N L

I

. .
.
.

Rasterization

Presentation

Time

\ 4

Figure 11. Introducing a synchronous dependency betwgeslipeé stages causes a
major performance degradation as the units must wait for ginedecessor to finish.

API design also has a big impact on performance. As APIs eydheir design-
ers learn more about the performance impact of various tethral decisions and
often try to amend the design to improve the situation. Theosmg force for this
process is the often quite justified desire to maintain backe compatibility with
existing applications using the API. The end effect is thagrdime, APIs accumu-
late various methods of doing things, some of which are Iffssemnt than others.
An article by Henning [51] highlights the delicate balargiact that API designers
must do between backwards compatibility versus API udsia@hd performance. The
cost of rewriting existing applications and re-educatiegeadopers inhibits the ways a
backward-compatible API can evolve.

A representative illustration of this issue comes from tbenber of different ways
the vertices of an object can be specified in OpenGL. Trauitlg, the vertices were
defined one at a time with a separate API call for each vertex:

gl Begi n(GL_TRI ANGLES) ;

gl Vertex3f (0. 0f, 0.0f, 0.0f);
gl Vertex3f (0.0f, 1.0f, 0.0f);
gl Vertex3f(1.0f, 1.0f, 0.0f);
gl End();

It was soon realized that this method incurred a great oeehhespecially when the
number of vertices was large. The issue was rectified withrttieduction of vertex
arrays, which can be used to specify the attributes of martices at once:

const GLfloat vertices[] = {
0.0f, 0.0f, O0.0f,
0.0f, 1.0f, O0.0f,
1.0f, 1.0f, O.Of
1
gl VertexPoi nter (3, G._FLOAT, 0, vertices);
gl DrawArrays(G._TRI ANGLES, 0, 3);

Here the vertex coordinates are first defined as a normal . dihe gl Vert ex-
Poi nt er callis used to tell OpenGL where to find the array, and find&leg/geometry
is commonly drawn withgl Dr awAr r ays . With vertex arrays, the number of API

CO~NO OIS WN PP

36

calls remains constant regardless of the number of vertidesever, when considered
in conjunction with a hardware accelerator, this solut®naot ideal either. The prob-
lem is that each time the draw call is made, all the verticee babe transferred from
CPU memory to the graphics accelerator. If the vertices §pgeometry that does not
change from one frame to another, the copying operationneented overhead. This
problem, in turn, was solved by adding the vertex buffer clopjeechanism:

const GL.float vertices[] = {
0.0f, 0.0f, O0.O0f,
0.0f, 1.0f, O0.0f,
1.0f, 1.0f, O.Of
1
GLui nt buffer;
gl GenBuffers(1, &buffer);
gl Bi ndBuf f er (GL_ARRAY_BUFFER, buffer);
gl Buf f er Dat a(G._ARRAY_BUFFER, 9 * sizeof (G.fl oat),
vertices, G._STATI C DRAW ;
gl VertexPointer (3, G._FLOAT, 0, 0);
gl DrawArrays(G._TRI ANGLES, 0, 3);

The vertex buffer object procedure also begins with a datitar of a regular C array
containing the vertex coordinates. On lines 7 and 8, a vdrtéer object is created
to house the array and activated. A vertex buffer objectssmtsally equivalentto a C
array, except that it can be stored in dedicated graphicsangior better performance.
The gl Buf f er Dat a call on line 9 is used to transfer the vertex data into theexert
buffer object. Finally, the vertex buffer object is indiedtas a source of vertex data
with gl Vert exPoi nt er and the geometry is drawn witgl Dr awAr r ays .

From these examples it is apparent that the more efficientthadef drawing ge-
ometry is, the more cumbersome and counterintuitive it lhsisafrom the developer’s
perspective. Especially in the case of disruptive featusash as vertex buffer ob-
jects, which have been retrofitted to an existing API withchdinging the underlying
design, the end result can be quite complicated to grasg Hbiwonder that some
desktop OpenGL applications are still written using thet fqgproach listed above,
because it is simply the easiest way of getting things done.

When the OpenGL ES was being crafted, the inefficient natutbeofertex speci-
fication API calls was understood, and therefore they wetenotuded. Both vertex
arrays and vertex buffer objects are, however, availabl@penGL ES and the pro-
grammer should be aware of their differences.

We have now introduced the main vector graphics APIs forttiesis: OpenGL ES
and OpenVG. The reader should now be familiar with the waplgis are constructed
in both APIs as well as some general factors that affect thoqmeance of vector
graphics applications. Next, we discuss the set of tools ave ldesigned to assist in
solving vector graphics quality issues.

37

4. GRAPHICS QUALITY ANALYSIS TOOLKIT
REQUIREMENTS

This chapter introduces the detailed requirements for eastponent of the Graphics
Quality Analysis Toolkit. We begin by examining the soft@anvironment of each

component. This is followed by the introduction of the cose tases, which are used
to derive the detailed design of the software.

4.1. Functional Requirements

As illustrated in Figure 5 on page 21, the central componefitise Graphics Quality
Analysis Toolkit are:

1. aTracer for capturing all OpenGL ES and OpenVG graphics commands exe
cuted by a Symbian application

2. aTrace Playerfor repeating the captured graphics commands

3. aTrace Analyzer for examining and manipulating the graphics command trace
files

4. Instrumented OpenGL ES and OpenVG graphics engine$or extracting de-
tailed content statistics from trace files

As the Tracer, the Trace Player and the Trace Analyzer arasalll in different
environments under different circumstances, we discusguhctional requirements
of each component separately.

4.1.1. Tracer

The tracer is used to extract API call traces from applicestio The main targeted
platform is the most recent iteration of the Nokia smartghsgstem software, the
S60 3.x series, which is based on Symbian OS 9.x. Some spapeatts of Symbian
OS 9.x must be taken into account when designing the tradessd are discussed in
more detail in the next chapter, which focuses on the lowl ldesign of the toolkit
components.

The tracer must be able to capture all API commands and tlueiatsd data ex-
ecuted by OpenGL ES 1.1 and OpenVG 1.0 applications. Howeéveust also be
generic enough to be extensible to other similar C APIs witidenate work. The
design should acknowledge that multiple graphics appdinatmay be running simul-
taneously and any of the applications may be multithreaded.

An important requirement for the tracer is that it must nojuiee access to or mod-
ification of the source code of the traced application. Thes®code of a debugged
application may not always be conveniently available dukctnsing constraints or
other limitations. Furthermore, changes to the applicasiource code imply that the
application must be recompiled. This is not always prattasmsome system software

38

might have unique build environment requirements. |If tleedr was based on the
modification of the application source code, the design tegisily preclude tracing
applications written in other languages, such as Java. efdrer, the tracer must be
designed to work with completely unmodified applications.

Tracing should be a non-intrusive operation for the targgtieation. While some
performance degradation is expected, the functionalihefapplication must not be
compromised. A necessary compromise is that if the apmicéd exhibiting a quality
issue that is very critical to timing, the tracer may not bkedb capture a reproducible
representation of it due to the introduced overhead.

The constraints of the mobile runtime environment implyt thea tracer should strive
to minimize its memory and CPU footprint. Tracing an applmatshould not con-
siderably hinder its performance, so that interactive isppbns remain usable. The
memory usage of the tracer should also be bounded when eequiue to the possi-
ble high volume of trace data, it should also be possible &xifpwhether the trace
should be saved to a file or relayed directly to a remote séodmyice. These and
other aspects of the tracer must be configurable withouthigawa rebuild the system
software.

4.1.2. Trace Player

The Trace Player has a dual role in the toolkit configuratkerstly, it is used directly
to play back recorded trace files, possibly on a differenplgies engine than the one
used to record the trace. The second use is to play back estdralce files using
an instrumented graphics engine to obtain detailed corstatistics. Due to these
circumstances, the Trace Player must be able to run on batibi@p OS 9.x and
Microsoft Windows XP.

The Trace Player must reproduce the exact API calls madeebgriginal applica-
tion. While some minor variations in memory addresses aneratétails are allowed,
the intention of this requirement is that the sequence gdtyca operations of the orig-
inal application must be reproduced with enough accurapydduce identical output.
To enable reliable benchmarking, the performance of thgeplenust be well under-
stood.

Matching the requirements of the tracer, the Trace Playet support both OpenGL
ES 1.1 and OpenVG 1.0, with similar provisions for addingmarpfor additional C-
based APIs.

4.1.3. Trace Analyzer

The Trace Analyzer is used to examine and edit recordedsiaceworkstation envi-
ronment. The tool is primarily run in a Microsoft Windows XRuronment.

The main purpose of the Trace Analyzer is to assist in pirtpwrapplication quality
issues in recorded trace files. The aim is not to make the sisglyocess completely
automatic, as that would limit the tool’s utility in caseathvere not considered during
the design phase. Instead, the analyzer should strive t@brexal purpose utility for
extracting as much information as possible from trace fildss information should

39

also be transferable to other programs in various formats flow level raw data to
high level reports. The Trace Analyzer also allows for theimgl of trace files and
extracting logical parts of traces to form new ones.

The user interface of the first iteration of the Trace Anatypel is command line-
based. This decision was made on the grounds that it is fire¢ mmgoortant to con-
centrate on the low level functionality of the analyzer. iQasg a graphical user
interface is not feasible until the major usage patternb®tool are explored in prac-
tice. A graphical user interface can be later implementaxioplement the command
line mode once the design of the tool has stabilized.

Pervasive automation support is a major requirement of taeelTAnalyzer. While
this is in part provided by the command line interface, a npawerful programmatic
scripting interface must also exist.

The Trace Analyzer employs the Trace Player to extract leelleontent statistics
from a recorded trace file. The design must define a way to sticte this operation
in coordination with various OpenGL ES and OpenVG engineddiAg new custom
content features should also be possible with relative.ease

4.2. Non-functional Requirements

The general functional requirements for the toolkit can bi@mmarized with the fol-
lowing principles:

e Completeness—each component of the analysis suite should aim for complet
coverage of the respective problem field. For the traces, rtiéans that every
API call and associated parameter is properly saved to #oe fille. Similarly,
the Trace Player should reproduce the original applicdigmavior as exactly as
possible.

¢ Invariance—to ensure consistent behavior, all parts of the suite shoiriimize
the side effects of their operation. In the context of trg¢ithis means that the
original application behavior is not altered with the imtuation of the tracer,
other than with possibly reduced performance. In the Tracalyxer, editing a
trace file should not inadvertently alter the ordering orction of the API calls.

e Portability —in the interest of portability, a common requirement fdicaimpo-
nents is that the amount of platform dependant code must bienized. Porta-
bility also concerns trace files in the sense that they mustamsferable from
one system and graphics engine to another when applicable.

4.3. Use Cases

The Graphics Quality Analysis Toolkit design is derivednfra number of concrete
use cases:

1. Unsatisfactory application performance

2. Visual error in application

40

3. Application quality analysis
4. Graphics engine benchmarking

5. Graphics content analysis

These cases are a generalization of actual tasks and supgoests that have been
assigned to the Nokia Display & Graphics Software team. Haentis responsible
for delivering graphics technology to other organizatiamats in the form of graphics
engines, performance testing, and support. This respbtysilaces the team in a very
central role when it comes to the graphical quality and perémce of applications.
A common situation is that a given application is sufferingni a quality problem,
which is assigned to the team as a defect in the graphics @ngine graphics team
must then investigate and classify the error, leading teatgrorkload with traditional
methods. In the following use case definitions, we demotestraw this workload can
be reduced with the aid of the Graphics Quality Analysis Kol

4.3.1. Unsatisfactory Application Performance

The first use case focuses on an application suffering froar performance. The
reason for the poor performance is unknown. The applicatoguestion is using
either OpenGL ES or OpenVG.

The goal of this use case is to identify the reason for the pedbrmance as quickly
and easily as possible using tools that have been made fotlyeizat purpose. Using
these tools, the engineer examining the issue should be@blearly communicate
the cause for poor performance to the application’s owner.

Experience has shown that trying to assess the reason fogpagahics performance
of an application using a debugger is time consuming andrétiisg. Not only must
the engineer discern the internal behavior of the appbodtiom the source code, he
or she will also have to make judgments about the executgehgp= API calls one
by one. Debugging interactive applications is also diffiidcause the application is
halted whenever the debugger is triggered. Often the samade might not be read-
ily available, introducing the additional challenge of gering application behavior
from assembly code.

Using a profiler to approach the issue may not always be Hekduprofilers only
work at the level of function calls. Individual function tatonvey little information
about the graphics content itself. The profiler only indésahow much time is spent
inside a particular function, but the actual reason for theegssing load might be a
completely different function call executed earlier. Timed spent executing a particu-
lar graphics function therefore depends on both the paempassed to that function
and the state of graphics engine at that point in time.

The first step in solving the quality problem is to classifynito one of the four
categories described in Section 2.6 on page 17. This clzsiin is the base for
guiding further optimization work. If the error is found teside in the application, the
process will also provide valuable information for solvihg error.

The work flow of this use case is illustrated in Figure 12. Thecpss begins by
running the problematic application on a mobile device oCalfased emulator. The

41

ﬂ

Call trace

!/

Application Trace

&

0 Performance problem
— Performance report > classifica‘t)ion

Content statistics

_

Figure 12. In the first use case, an application sufferinghfeoperformance problem
Is traced and the problem is categorized based on varioes tfgrace analysis.

graphics commands of the application are captured usingaber. Depending on the
application, one or multiple traces may be taken. Then, #reerated trace files are
transferred onto a workstation for analysis. The Trace ya&l is used to produce
a number of reports and statistics concerning the graploictent. These figures are
finally used to categorize the quality problem.

4.3.2. Visual Error in Application

In the second use case, an OpenGL ES or OpenVG applicatiterséom a visual
error or a crash in the graphics engine. A failure in the @ppilbn code is the respon-
sibility of the application developer and solving it is adesthe scope of this thesis;
our objective is merely to indicate which component is cagishe error.

The goal in this case is to quickly identify and isolate theerBy error isolation,
we mean reproducing the error with the bare minimum of regui&PI calls. If an
error is simplified in this manner, finding the cause for therein the graphics engine
is much easier.

Traditionally errors of this kind are solved using a debugyesource code inspec-
tion. While a debugger is useful in many cases, it is easilgatetd by errors that are
hard to reproduce by using the application. Such error$ydaad to much work trying
to narrow down the error by repeatedly triggering it. Sowmde inspection is also an
ineffective tool for large or complicated applications.

The workflow for this use case is illustrated in Figure 13. Adtfithe problematic
application is traced on a mobile device. The trace is thewddnt into the Trace
Analyzer, which is used to isolate the error. The error ifai®al by first extracting the
API calls for the frame exhibiting the error into a new trade.fiThis new file is then
played back on the original device to verify that the errdrappears. If the error does
not reappear, a different call sequence is selected fromrtgmal trace until the error
reappears.

Once the error is isolated to a minimal API call trace, it isdigor three different
purposes: firstly, it is used to verify with a reference eeginat the error is indeed
caused by the graphics engine; secondly, it is used to défeugrtor in the graphics
engine; finally, the trace is converted into a C source filertalicates the behavior of

42

Graphics
- vendor
A & C source code

\ Regression

/ test case

> U —> > Reference engine
= = U\ "
Application Trace Isolated
error 77 Debugger

Figure 13. The second use case focuses on an applicationenqeg a rendering
error. The application is traced, the error is isolated fthentrace and analyzed further
with a reference graphics engine, a debugger and as a stardalsource file.

the trace. As the C file is completely independent of the reteanalysis toolkit as
well as the original application, it can be given to the gieplengine vendor for further
analysis. Additionally, a regression test case is creasatjuhe C code to guarantee
that the same error does not reappear in a future versiore @rdphics engine.

4.3.3. Application Quality Analysis

The third use case is about assessing the quality of a ve@phigs application. Such
analysis should be performed even if the application in tioiess not suffering from
an obvious performance problem. The reason for this is teaabhalysis can highlight
certain areas that can be improved to conserve battery, GRbkmory usage.

The technique outlined in this use case is not meant to disgtaditional methods
of quality analysis such as application profiling or codde@ing; the intention is to
complement such methods by providing more information tolgdurther optimiza-
tion work.

The workflow for this use case, as illustrated in Figure 14yifge with recording
one or multiple graphics traces from the examined appbaoatin general, multiple
traces should be created if there are great variations iaghkcation’s graphics under
different circumstances. These traces are then broughthetTrace Analyzer, which
is used to produce detailed content statistics on the grageintent.

An engineer analyzing the application can be interestedvitla variety of statistics
about the graphics content, but in general the focus is omeggtihat can be used to
judge the complexity of the graphics content against thals#ipes of the platform and
graphics engine. Some examples of such measures are thefleverdraw versus the
platform fill rate capacity, the number of transformed \@$i versus the transformation
capacity, and the texture upload traffic versus the systemanebus capacity. The
system should make it relatively easy to extract other sinstatistics.

In addition to statistics, the generated reports also delinformation about the
executed API call patterns. Features such as platform diepénperations, inefficient
procedures, redundant call sequences, and other ineffieeshould be highlighted.

43

~

Call trace

!

Application Trace

&

/ REPORT
0 Development
> Performance report > recommendations

Content statistics

Figure 14. In the third use case, an otherwise well-behapetication is traced and
analyzed in terms of vector graphics quality. A set of deprient recommendations
is derived from the analysis.

Based on the extracted information, the engineer is ableveo@ear development
recommendations for the application developer.

4.3.4. Graphics Engine Benchmarking

The fourth use case switches the focus from applicationsaplgcs engines. A new
graphics engine needs to be benchmarked to estimate itssfimerendering the graph-
ics of a particular application.

Graphics engines are commonly benchmarked with a combmafidedicated syn-
thetic benchmarking programs and real applications. ®ymtlhenchmarks are prob-
lematic, because they are generally written by graphicers@mnd therefore do not
share the same inefficiencies that real applications sarmestdo. On the other hand,
using real applications for benchmarking is troublesoreeabse the application code
usually needs to be modified to implement automated relinblechmarking runs.
While such modifications can be done for a single test run,igkipibecomes a chore
if the number of applications is increased. Furthermoregary stages of develop-
ment, new graphics engines commonly run on prototype hasjwehich might not
support the running of regular system applications.

In this case, the workflow begins creating a trace from thdiegtpon to be used
for benchmarking. The analyzer provides two ways of crgatienchmarks. Firstly,
the Trace Player can be used to directly play back a spedstigted benchmark trace
file. This method is straightforward and flexible, since thhacé Player can readily
play back any valid trace file. A possible drawback with thistihod is that the process
of reading and interpreting the trace file during the benckmzay skew the results.
The second way is to convert the benchmark trace file into @saode, which is then
compiled and executed to obtain the benchmark results.méibod is more involved,
since the benchmark must be recompiled each time the trad@rgged. The results
obtained with this method, however, are likely to be moreugate, since the compiled
benchmark has less overhead during runtime than the Traye®IFurthermore, C-
based benchmarks have fewer system dependencies in ceoparithe Trace Player.
In this use case, we will explore both ways of creating berarts

44

i U ’ L/ /
U :
Application Trace Benchmarked
engine

Figure 15. The fourth use case consists of benchmarking agregehics engine using
existing application content extracted via the tracer.

REPORT
0
Performance report

/
\!/ — bjj —_ \ H Content statistics
~

Application Trace N,
PP /\/ Meshes and paths

Figure 16. In the fifth use case, the graphical content of gtiGgiion is analyzed in
detail.

The general process for this use case is illustrated in Eifbir The output of this use
case is an estimate of how well the new graphics engine witbp@ when rendering
the application graphics content.

4.3.5. Graphics Content Analysis

The final fifth use case demonstrates the in-depth contehtsam&unctionality of the
toolkit. This functionality is presented with the hope tlitatvill be useful to more
detailed content analysis, clustering, and performanieason work in the future.

An overview of this use case is shown in Figure 16. As befoselected application
Is traced to produce a trace file of graphics operations. o ffile is then analyzed
to extract high and low level content features in the formahpiled reports and raw
data. Instrumented engines for OpenGL ES and OpenVG willdsel wo calculate
some of the statistics.

The objective of this use case is to demonstrate a systeamgiroach to gaining an
in-depth understanding of typical graphics content. Thisvidedge could be used to:

e Guide the development and optimization of graphics engihew level statis-
tics on real application graphics content are valuabletitgpthis work.

e Cluster different applications into representative penfance classes based on
graphics content complexity. This can be used to quicklyrege the perfor-
mance level of an application on a piece of graphics hardware

45

e Create synthetic benchmarks for graphics engine perforenasitmation. The
objective of these benchmarks is to overcome the limitatiohusing traced
application content directly for benchmarking as presgimethe previous use
case. Synthetic benchmarks can be more easily parametésipeoduce differ-
ent kinds of graphics processing loads.

Previously, this kind of data was based on a limited numbepplication studies
and anecdotal information from content developers. Thegs® outlined in this use
case defines a practical means of obtaining this information

We have now presented the requirements and essential usefoashe Graphics
Quality Analysis Toolkit. The following chapter providessight into how these re-
quirements are translated into a software implementation.

46

5. GRAPHICS QUALITY ANALYSIS TOOLKIT
ARCHITECTURE

Having defined the requirements and the core use cases fGraphics Quality Anal-
ysis Toolkit, we are now ready to proceed to the detailedytesnd architecture of the
software components. This chapter focuses on the desigoeshgustifications, and
limitations of each component.

5.1. Tracer and Trace Player Generator

Early in the design phase of the Tracer and Trace Player @rbeclear that both com-
ponents would consist of large amounts of repetitive codee @OpenGL ES 1.1 and
OpenVG 1.0 APIs have 187 and 84 functions respectively, astl &inction requires
a corresponding entry in the tracer and Trace Player. Writiege functions by hand
would be tedious and error-prone. To minimize the impleragon effort, we decided
to employ a code generator to create most of the Tracer are Rlayer code.

A code generator generally works by reading a compact dospecific representa-
tion of the desired system and creating a corresponding@mo@ source code form.
This source code can then be fed into a normal compiler toym®dn executable pro-
gram. Code generators are extensively used for creatingrsastate machines, and
other applications that are too complex to be written by hand

The operation of the code generator in our system is illtestran Figure 17. First,
a set of API configuration directives combined with platfespecific information is
used to create a tracer project file. This project file is theghifito the code generator
to produce both the Tracer and the Trace Player for the &dg&®l and platform. The
tracer project is also used to pass the API configurationddtace Analyzer.

In addition to source code, the generator also produce®piaispecific build sys-
tem files that are used to compile each generated componkaseTiles are created
for all the respective build systems of Symbian OS, Micro$indows, and Unix
derivatives. Build file generation was especially useful$gmbian OS, since com-
piling applications targeting that platform requires wgft a large number of resource
files in addition to the source code itself.

5.1.1. API Configuration

All components of the toolkit require in-depth knowledgeatithe targeted API. This
information is derived from a number of sources to make uprdeer project file. The

most essential bit of information is the list of API funct®imcluding their parameters
and types. Itis specified in the form of a standard C headedditionally, a separate
configuration file is used to define attributes of the API, sash

e Which functions trigger rendering, frame swapping or APhteration.

e The state model of the API and how function parameters argethfo it. See
Section 5.2.5 on page 55 for further information.

47

API configuration \ / Tracer

API header files —_— S) —
=2

Platform-specific / Tracer COde\\> Trace Player

data project generator

Figure 17. API- and platform-specific configuration data asnbined to produce a
project file, which is in turn used to generate the Tracer ardltace Player.

e Which functions are extension functions and require spgumatessing. See
Section 5.2.8 on page 60 for further information.

e What kind of platform-specific objects the APl employs.

¢ Rules for calculating the sizes of array parameters.

An excerpt from the OpenGL ES configuration file for teLi ght f v function is
shown in Figure 18. Thgl Li ght f v function is used to control different parameters
of OpenGL ES lights, such as their color or position. Theipaldr example shown
in Figure 18 specifies how each of the three parameters otitiation, light, pname,
andparams, should be processed by the Tracer and the Trace Player.eAsghtwo
parameters are simple integers, the configuration onlgatds where they should be
mapped in the state model. The quoted strings specify statieinpaths. Our state
model system is described in more detail in Section 5.2.5age 5. The final param-
eter, however, is more interesting, as it is an array. The gizhat array depends on
which light attribute is being changed, as different atttés require a different num-
ber of numeric values. As the changed attribute is chosethgjname parameter, the
number of elements in thE@rams array can also be determined through that parameter.
The configuration shown in Figure 18 therefore specified, higadefault theparams
array will contain 4 elements by default, except if ffm@me parameter equals the nu-
meric constantG.__ SPOT_DI RECTI ON. In this case, the array will have 3 elements.
Similar conditions are repeated for each possible vari&tth@pname parameter to
cover all possibilities.

As the pattern of using different parameters to specifyyasiaes is very common
in EGL, OpenGL ES, and OpenVG, we designed the configurajiotag to provide a
compact representation for such cases. While this systearsowost array parameters
in these APIs, some special cases, such as EGL attribuge lefuire hand-written
code for calculating the array size. In practice, we fouraséhcases to be rare.

Several configuration directives are also required for dbngpthe generated com-
ponents. On Symbian OS, the symbols in dynamically linkkdhlies are not found
by names but by ordinal numbers [8 p. 388]. This means thataleer must know the
ordinal number of each API function in order to find the cop@sding function in the
system graphics engine. The same information is also ndededmpiling the tracer,
because binary compatibility requires that the ordinalésoéxported functions must

48

1 gl Lightfv:

2 {

3 light: "ctx.light"

4 pnane: "ctx.light.paraneter”

5 par ans:

6

7 st at e: "ctx.light. paraneter.val ue"

8 net atype(class = "array", size = "4"):

9 [

10 size(condition = "pnane", value = "G. SPOI DI RECTI ON'

11 result = "3")

12 size(condition = "pnane", value = "CG. SPOT EXPONENT",

13 result = "1")

14 size(condition = "pnane", value = "G. SPOT CUTO-F",

15 result = "1")

16 size(condition = "pnane", value = "G. CONSTANT ATTENUATI ON",
17 result = "1")

18 size(condition = "pnane", value = "G. LI NEAR ATTENUATI ON",
19 result = "1")

20 size(condition = "pnane", value = "G. QUADRATI C ATTENUATI ON",
21 result = "1")

22]

23 }

24 '}

Figure 18. Example configuration directives for tgéLi ght f v OpenGL ES func-
tion. The settings shown here specify how the three paraméiethe function are
processed by the Tracer and the Trace Player; most notablgname parameter is
used to determine the size of tharams array.

match those of the original graphics engine. In our systbesd ordinal numbers are
parsed from the same DEF files used by the Symbian OS buildrayst

5.1.2. Working with Generated Code

The use of code generation greatly simplified the task ofémgnting both the Tracer
and the Trace Player. Both are complex pieces of softwareshareiquired numerous
refactoring steps to reach their present state. Withou¢ gasheration, such iterative
improvements and wide-reaching modifications would hawnhery tedious to man-
ually apply into the code base. We routinely had to make cbstigat involved modi-
fications to Tracer and Trace Player code for every API famctThe most significant
advantage brought by the code generator is the ease of asldwpgrt for new C-style
APIs; a minimal Tracer and Trace Player can be generatedsalda@ctly from the
header file of the API.

49

a) ,
DLL interface
E »
Application Grap_hics
engine
b) DLL interface DLL interface
Application i Graphics
engine
U‘
U
Trace file

Figure 19. a) A regular Symbian graphics application is dyically linked to the
system graphics engine. b) The tracer masquerades as teemgysaphics engine by
providing a matching DLL interface to the client applicatid his arrangement enables
the tracer to copy all executed rendering commands to the file.

The downside of code generation is the introduction of a remellof abstraction
into the system. Debugging was somewhat hindered by thétfacthe mapping from
the API configuration to the final generated code was not aveagightforward. An
important design principle is that the generated code matgb@ modified by hand. If
the code is changed after generation, the changes mustdigeredch time the code is
generated again. The need for very specific improvemenksetgénerator output was
handled through the addition of code hooks or placeholdéng API configuration
can use these hooks to replace specific parts of the gene@dedvith customizable
code. This functionality is used to inject hand-written eaato the Tracer or the Trace
Player to, for instance, save the contents of enabled vartays in the gl Dr aw
El enent s OpenGL ES function.

5.2. Tracer

The tracer is responsible for saving each executed graplifitsall and the associated
data to a trace file. This means that it must find a way to positse!f between the data
flow from the application to the graphics API. To do this, tfaeer exploits the fact that
on Symbian and other modern operating systems, applisaéiendynamically linked
to the graphics engine, as seen in the top half of Figure 18.gfaphics engine DLL,

50

dynamic link library, is renamed, and the tracer takes ige@l The tracer provides
an identical DLL interface to the application in order to reatself indistinguishable
from the original graphics engine. This setup, as illustlah the bottom half of Figure
19, guarantees that every graphics API call executed byppkcation ends up in the
tracer entry point for that particular function.

Due to the security limitations of Symbian devices, the drais not be a user-
installable program, since the graphics engines and oyiségrs software on a mobile
phone cannot be overridden. For this reason, the tracerlmeustegrated directly into
the system software image of the phone.

Function-level Tracing

Each API call entry point in the tracer is responsible fotinglthe respective function
in the graphics engine and saving all data related to thetitmancluding its return
value, to the trace file. An example trace function is showrrigure 20. In the
code, a new event is first opened for the current function cgtch function call
made while the tracer is active maps to an event in the trazeThien the underlying
graphics engine function is called with the original partar® The function call is
also surrounded by timing code that measures how much tiseist in the graphics
engine. Finally, the original function parameters are adddethe event and the event
is closed.

The function parameters are saved only after calling thgirmal function because
some of the parameters might get modified during the enginetifan call, and the
trace file should contain the final values of such parameférs.function might also
have a return value that needs to be saved, and return vatieslg available after the
engine function has been called.

Data Types

In the example case shown in Figure 20, all the function patara were simple
floating point values. This is not the case, however, withfthlespectrum of func-
tions found in OpenGL ES and OpenVG. The parameter typearidier three distinct
classes: basic types, arrays, and opaque objects. Eaokseftlasses requires special
consideration to guarantee that the proper informatiorrigem to the trace file.

The first class of basic types is the simplest. It encompadka®mic types, such as
integers and floating point numbers of varying precisiore ajority of function pa-
rameters fall under this class. Their serialization ontyuiees that a standard encoding
Is used when saving and loading the values.

The second class — array parameters — contain sequent@alndg#&tad of a single
value. In C, the value of an array parameter is a pointer to #graony block containing
the array data. The tracer must acknowledge this fact bglsgng the data contained
in the array rather than the memory address, because thesaddould be meaningless
when read back from the trace file. Serializing the array datsimple matter of
copying it to the trace file, as long as the length of the arsdgnown. In C, the length
of an arbitrary array cannot generally be deduced withodttihal information. In

15
16
17
18
19
20
21
22

51

voi d gl Col or4f (G.float red, G.float green
G.fl oat blue, G.float al pha)

{
/= Establish a new tracer event =/
TREvent » event = trBegi nEvent Byl ndex(0, 33);
[+ Call the underlying graphics engine function */
trBeginCal | (event);
TR _CALL4(voi d, event->function
G.float, red, CLfloat, green,
CGL.float, blue, G.float, alpha);
trEndCal | (event);
[+ Save the function paranmeters =/
tr Fl oat Val ue(event, "red", red);
tr Fl oat Val ue(event, "green", green);
tr Fl oat Val ue(event, "blue”, Dblue);
tr Fl oat Val ue(event, "al pha", al pha);
/+* Signal the end of the event =*/
tr EndEvent (event);
}

Figure 20. Example tracer code for thgl Col or 4f OpenGL ES function. The
tracer first calls the corresponding function in the systeaplgics engine and then
saves the parameters of that function to the trace file.

some cases, this information is not readily available aedrdicer must resort to more
advanced techniques. These circumstances are discusseaténdetail in Section
5.2.5.

The tracer only supports homogeneous arrays, in which eaap @ement is of the
same type. This is sufficient because most arrays in thetéatrgfePls are homoge-
neous, and those that are not, can be simply saved as arreys bytes.

The third class — opaque parameters — are values that careymeaning than just
their numerical value. An example of such a value is the esfee to a native window,
which is passed to theegl Cr eat eW ndowSur f ace function. The reference is
used to assign the newly created window surface to a patieuhdow created by
the application. To save this information to the trace file, tracer does not write out
the reference itself. Instead, every relevant detail abwitvindow, such as its width
and height, is written. This information can be later useddostruct an equivalent
window when playing back the trace. This approach also malkessible to transfer
traces from one system to another, where the implementatioative resources such
as windows may be completely different.

52

5.2.1. Platform Security

To lower the probability of viruses, Trojan horses, and pthalware infecting mobile
devices, version 9 of Symbian OS introduced a mandatorysaamentrol mechanism
called Platform Security. From an application’s point oéwj Platform Security re-
stricts access to certain system files and services basdueamssigned capabilities
of the application. Every application binary and sharedalip running on the de-
vice is digitally signed, and the set of capabilities ass@yto an application cannot
be changed after the application is signed. Several diffesgning certificates are
defined, each granting a different level of capabilitiesp [315]

Platform Security also controls how application code cafirid&d together during
runtime. The governing rule is that an application with ataierset of capabilities
cannot use a DLL with fewer capabilities. This is done to prena privilege escalation,
where a DLL could get more capabilities than it was origyalsigned. [8 p. 321]

The implications of Platform Security for the tracer are fistd. Firstly, the trace
files may not be written into restricted system directoriesr this reason, the tracer
reads a runtime configuration file, which can be used to alerte trace file loca-
tion. Secondly, to guarantee that all vector graphics appbns on the device remain
working even after the tracer is installed, the tracer DLLsioe given the highest
level of capabilities. Furthermore, due to Platform Segusystem software cannot
be overridden by user installable applications. Theseigpemuirements imply that
the tracer must be installed directly into the mobile degicystem software image.
This makes installing the tracer somewhat difficult, beeahs user must have access
to a system software development environment. This fastomitigated by the run-
time configurability of the tracer, which guarantees thategally there is no need to
alter the tracer after installation. For instance, a comégian file can be used to limit
the tracer to only certain applications or graphics APIsrtliermore, if needed, the
tracer can be built as an unprivileged DLL under a name diffeto that of the system
graphics engine. This tracer DLL can then be used by linkiregexamined program
directly to it.

5.2.2. Performance Considerations

In the following sections, we will detail the optimizationsed by the tracer in order
to meet the required level of performance.

Write Buffering

Maintaining an acceptable level of performance while trygapplications is greatly
dependant on the tracer’s ability to write out data to thedrfile at a sufficient rate.
Our initial approach was to use a synchronous write operatids Symbian only
performs write caching for the file allocation table of the lystem and not the actual
file data [8 p. 377], the performance of this method was fowraketunacceptable. We
then implemented a write buffer mechanism, which gatheasgelamount of data into
a memory buffer and writes the whole buffer into the outpetdit once. This brought

53

performance to an acceptable level, but the synchronodierififshing caused a long
pause whenever the buffer became full. This prompted théeimgntation of a fully
asynchronous buffering mechanism, in which a dedicatedevdhread collects data
into an array of buffers in a round-robin fashion and fluslmesfilled buffers into the
output file. With this solution in place, the tracer is ablestestain sufficient write
performance, as long as the average data bandwidth doesas@ickthe capabilities of
the output device. This solution does have a memory usade-t#i due to the buffer
allocations, but the size and number of buffers can be axtjuss needed. The tracer
can also be run in a completely synchronous manner to gusgrantomplete trace in
the case of a graphics engine crash.

Reducing Redundancy

In addition to improving write performance, it can also badkgcial to minimize the
amount of data being written. In our first trials, a two min@penGL ES animation
with roughly 30 000 rasterized triangles per frame gendrat250 megabyte trace file.
This was clearly not practical, given the limited storagacgpof a mobile phone. A
commonly observed property of animated graphics is a higdl [&f frame coherence,
that is, a frame tends to resemble the one preceding it. ORiecall level, this
means that nearly identical sequences of API calls are tegppdam frame to frame.
We found that the biggest contributors to the trace file sigeevthe various arrays used
to describe vertex coordinates, texture images, triamgliees, and other similar struc-
tures. We found that a very high percentage of the trace fieeansisted of repetitive
array data. Based on these findings, it made sense to implensentpression method
to reduce the amount of redundant trace file data.

Array data compression in the tracer is based on the obsamiat graphics ap-
plications tend to keep constant array data in the same qdiyairay; if the data does
not change, then there is little point in moving it to a diffet array. For example, if
an application draws a mesh using vertices stored at menaoinessi000, a future
draw call referencing vertices at memory addréd$0 is likely to refer to the very
same vertices. The compression scheme is based on the adéastiead of saving the
vertex data again, we simply state that the data is the samelasprevious draw call.

Obviously, by only comparing memory addresses, the traceidivfail to notice if
the application had in fact modified the array contents aftesas saved to the trace
file. This is why the tracer must, upon encountering a presfijoseen array, verify
that the array contents have not been modified before maikiag a duplicate. If
the array has changed, the tracer must write out its new etinte the trace file.
Ideally, the tracer would mark the memory region occupiedhayarray in a way that
it could automatically detect any modifications to it. Uriforately, Symbian OS does
not provide such functionality, and therefore the tracesinttack array modifications
explicitly.

Our initial attempt at detecting array modifications wasdalzuolate a message digest
value for the array contents and compare that to the previalue. The problem with
this approach was that a simple message digest algorithnpreag to collisions, in
which the same digest value was assigned to different aatay @hile a more complex
algorithm was computationally too intensive.

54

A more complete array tracking algorithm would need to maiternal copies of
each encountered array in order to later check whether thy aas modified. The
algorithm implemented in the tracer is a compromise in thessdhat it only tracks
changes to arrays that have been encountered at least lwjm@ctice, this is a work-
able solution, since replicating the same array a maximutwofimes into the trace
file does not constitute a major overhead. The array tradgkeradlows for limiting the
array cache size to ensure that system resources are nosédhdy the algorithm.

While the array tracking method described here is effectiveniost applications,
it fails to reduce the trace data volume for applications tlymamically generate ge-
ometry that is different for each frame. An example of suclapplication is one that
renders graphics using dynamic objects, which only corttanvisible set of geom-
etry at each point in time. Since the structure of the comganljects changes very
frequently, the tracer must write each encountered varidt the trace file. This leads
to poor performance. Fortunately, we have found very fevhapuplications, so the
impact of this limitation is relatively minor.

5.2.3. Portability

The C language was chosen for implementing the Tracer andiree Player. This
was a natural choice, since the targeted APIs were also Qlbdseng C also made it
easier to port the software to new operating systems.

The tracer is an unusual software component in the sensk tlosts not have a sin-
gle entry point or an initialization sequence. In contrastmal executable programs
have one main function, which is invoked by the operatingesysvhen the program is
started. Similarly, dynamic libraries commonly define ag&ninitialization function,
which must be called prior to any other function in the lilgraBince the binary API
of the tracer must match that of the traced DLL, any speci#iblization sequences
cannot be relied on.

To overcome this limit, the tracer simply checks a globaliafization flag at the
start of every API call invocation; if the flag is not set, thhacer has not yet been
initialized for the particular thread. The problem withsl@pproach is that Symbian
does not directly support writable static data in libraf4s p. 38]. This limitation
was worked around by using a global data API provided by Sgmtalthough at the
minor cost of an extra kernel mode switch upon each traceccAlRI

In addition to global data, other services such as file systerass, memory alloca-
tion and library symbol lookup are very dependant on the tyithg operating system.
For this reason, such services were encapsulated in a stiigfl library inside the
tracer to keep the rest of the code platform neutral.

5.2.4. Trace Files

Trace files are essentially serialized streams of functalls @nd their associated pa-
rameters. The tracer can write trace files in both text anarpiformat. The text format
Is provided as a quick debugging aid, since it does not recugeparate conversion
step for obtaining a human readable call trace. To simphgy design of the Trace

N

55

Player and the Trace Analyzer, importing traces in plain tesmat is not supported
by our system.

The binary trace file format is a low-overhead tokenizedastreencoding, which
can be read and written by all components of the toolkit. Tmmat supports a simple
phrase book compression scheme, where repeating datansequean be assigned
a shorter identifier. The encoding is designed to be selfatoed in the way that
it is not tightly coupled with any specific APl configurationVhile such coupling
could have helped to somewhat reduce the trace file size uildd@ve also meant that
changing the API configuration would have invalidated ac#s taken with the old
configuration. Explicitly maintaining backwards compdiip with the old format or
converting existing trace files to the new format was not sssmviable alternative, as
API configuration changes were very frequent, especiallly @athe development.

The trace files can be saved to different output devices atededn a mobile de-
vice, the user can choose between a RAM disk, the built in flastnony of the device,
a memory card or a high throughput proprietary debug interfa a host computer.

5.2.5. State Tracking

State tracking is the process of keeping track of the grapdmgine state throughout
the execution of an application. State tracking is needetifo purposes in our sys-
tem. The first is to enable the tracer to save all applicataia gassed to the graphics
engine. The second use is to model the relative dependenfdies API calls, making
it possible to extract a set of frames from a longer trace amfbpm in-depth analysis
of the call trace.

Our aim was to create a generic state tracking solution ghaot limited to either
OpenGL ES or OpenVG. Instead of explicitly modeling the ctete API state, the
emphasis was set on the dependencies between various A$taalto the special
requirements of the analysis tool. An important propertg Weat the state tracker can
be used to manipulate a trace with the Trace Analyzer in swedyahat the order and
parameters of the original API calls are preserved. As sfaggies or render calls do
not generally modify the state, we do not need to model thealior.

The state tracking done in the tracer is a very small substteofull state tracking
mechanism used in the Trace Analyzer. To distinguish thesectaises, the simpler
tracer state tracking is referred to as runtime state tnacki

Runtime state tracking is essentially about maintainingrezfces to API call pa-
rameters that cannot be serialized to the trace file at the dinthe API call itself. A
classic example of such API calls is the vertex array fumetity of OpenGL ES. The
problem can be illustrated with the simple procedure of dngva triangle.

const GL.float vertices[] = {0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f};
gl VertexPointer(2, G._FLOAT, 0, vertices);
gl DrawArrays(G._TRI ANGLES, 0, 3);

The code first defines a set of three two-dimensional coowsntor the triangle
corners or vertices. The triangle corners are located.ax), (0,1) and(1,0). The
second line tells OpenGL ES where in the memory to find thesedawates and how

=

56

they are formatted. Finally, the third line of code insteutte graphics engine to draw
one triangle with the three coordinates.

All parameters of the API calls on lines 2 & 3 can be savedaliyiby the tracer,
except for the pointer to the coordinate data on line 2. Thublpm is that in the
C language, it is generally impossible to deduce the lenfjimarray merely from a
pointer to it. Therefore, we cannot save the vertex datath@drace file when thel -
Ver t exPoi nt er call is made, since we do not know how many vertices to expect.
The number of vertices is only known when the triangle is draiine three.

The solution is to save the vertex pointer into the state&k@gmaat the gl Ver t ex-
Poi nt er call. Later, at the gl Dr awAr r ays call, the number of vertices can
be calculated directly from the function parameters andatttaal vertex data can be
retrieved through the stored pointer.

Similarly, full state tracking also deals with the APl calirameters. Instead of
saving the parameters to a data stream, the goal here iseiorde¢ which preceding
API calls the current API call depends on. This informati@m de used to decide
which API calls are redundant and can be discarded withdattaig the program
outcome.

As an example, let us examine the task of choosing the fijeriade of a texture in
OpenGL ES.

gl Bi ndText ure(G._TEXTURE_2D, 3);
gl TexParaneteri (GL_TEXTURE_2D, GL_TEXTURE_MAG FI LTER, GL_LI NEAR);

Here, the first API call assigns texture number three to thigeatvo-dimensional
texture unit. The second call assigns the magnification fitethe bound texture. It is
clear that these API calls need to be made in this order ariddvetneeded to achieve
the expected outcome. Therefore, a dependency exists dretiven.

To model this dependency between API calls, we designedarbfécal data struc-
ture called thestate tree. The state tree is a directed acyclic graph, in which vestice
represent the elements of a state structure and edges thedigwies between them.
The state tree also holds the concrete state values.

One possible state tree for the texture filtering exampléasve in Figure 21. As
seen in the figure, there are two different kinds of elememthé tree: groups and
nodes. The groups can contain a list of child nodes and ctmnstate values, while
the nodes contain a set of subgroups, one of which is markedresnt. The groups
are used to store state values at various levels in the trde thle nodes are kinds of
switches that control traversal through the tree.

As the state tree has a single root, it is possible to refelltotiaer elements of
the tree through unambiguous state paths. For examplegtere filtering mode
GL_LINEAR can be found through the state path:

Root| — | Texture target— | GL_TEXTURE_2D|— | Texture name—
— | Texture parameter— | GL_TEXTURE_MAG_FILTER

Taking into account that the nodes in the tree implicitly efihe successive group,
the path can be simplified to

Root| — | Texture target— | Texture name— | Texture parameter

57

Texture target

GL_TEXTURE_2D

Texture name

Texture target
»
GL_TEXTURE_2D

GL_TEXTURE_1D
A Y

Texture parameter Texture parameter
S

(GL_TEXTURE_MAG_F”—TER) (GL_TEXTURE_MAG_FILTER) GL_TEXTURE_MIN_FILTER

Figure 21. A possible state tree for storing the filtering et a texture object. The
tree on the left only shows the specific elements used to gteritering mode, while
the tree on the right also shows some alternate optionsdweersal, highlighting the
tree-like nature of the structure. The groups in the treelea@n as rounded rectangles
and the nodes are illustrated as angled rectangles.

Table 1. Mapping API call parameters to state tree elemesig) state paths.

API call Parameter | State path

gl Bi ndText ure target Root—Target
texture Root—Target-Name

gl TexParaneteri target Root—Target
pname Root—Target-Name—Parameter
param Root—Target-Name—Parameter-Value

Finally, the API calls and their parameters are mapped toehts of the state tree
using state paths. An example of such mapping for the AP$ caked in this particular
case can be seen in Table 1. Each state path points to eitheu or a node in the
state tree. If the state path points at a group, the valueeofabpective parameter is
stored at that group. Conversely, a state path ending in aseidehe currently active
subgroup of that node.

Given a function call and the associated parameters, edicglthe updated state
is simply achieved by processing the state paths for thengeteas ordered from the
shortest to the longest. Finding the prerequisite APl dalis given API call can be
done by collecting all the calls that have contributed to pawt of the state paths asso-
ciated with the given call. Extracting prerequisite APIllsdtom a trace is discussed
in more depth in Section 5.4.4 on page 70.

The state tracking model presented here covers most funsciioOpenGL ES 1.1
and OpenVG without modifications. However, some functityjasuch as matrix

58

stacks and object deletion, requires special code for codependency information
tracking. Our system enables this by allowing the user tondefustom state process-
ing code for the required API calls. In practice, we found skete model’s greatest
benefit to be the compact representation; the 1,500 linegpehQL ES state config-
uration in our system is tiny compared to the amount of hantemrcode that would
have been needed to implement it manually.

5.2.6. Tracing OpenGL ES

Many of the OpenGL ES state setting functions follow a comrpattern with regard
to the size of array parameters. For example,gh&ht eri al f v function, which is
used to modify surface material properties, takes thrempeaters: the affected surface
side, the name of the material property to set and an arragicamg a new value for
the property. Since the final parameter is an array, thertraast know its size in order
to save it to the trace file. Here, the array size depends oohwhaterial parameter
is being set. The rule is that by default the array contains &ements, unless the
material shininess is being set, in which case the arrayagmionly one element.
Since similar instances of array sizes depending on thealanother parameter are
abundant in the API, a special compact representation @antwas implemented in
the tracer.

The OpenGL ES tracer has a number of special optimizatianisijoroving perfor-
mance. The rendering state is tracked in order to limit thalmer of vertex arrays the
tracer has to observe. The array tracker is also prevertadrraking internal copies
of arrays such as texture data, which are unlikely to be eusthe future.

5.2.7. Tracing OpenVG

OpenVG was designed to be conceptually similar to OpenGlaBE$ugh with a more
object-oriented approach. Instead of a special set of fnmgtfor each object class,
OpenVG has a set of generic attribute access functions dnabe used to modify and
guery objects of any type. This reduces the number of diffeiienction variants from
the API and generally makes the tracer design simpler.

Path Coordinate Arrays

As with OpenGL ES, the difficulties encountered while impéting the OpenVG
tracer revolved around array parameters. A central objassin OpenVG is the path,
which is the main geometric primitive of the library. Pattmnsist of a list of com-
mands that make up the path and a list of coordinates for ttmen@nds. A command
IS an instruction to OpenVG, indicating how to draw the negraent of the path, i.e.,
should it be a line, a curve or some other shape. The list abooates specifies where
this next path segment should be drawn. [48 p. 49]

The length of the path coordinate array depends on the coasrthat make up the
path, since different commands use a different number ofdioates. When a path
is normally extended, a list of path commands and the agsoctordinates are ap-

59

pended to it. In this case, the tracer can simply calculadehgth of the coordinate
data by looking at the given path commands. However, Openg&allows the ap-

plication to modify any contiguous subset of the stored matbrdinates. Since the
function for modifying path coordinates does not have ampatar indicating the size
of the coordinate array, the tracer must keep a copy of theqg@hmands in memory.
This command list is then used to calculate the expected auofipath coordinates
upon demand. The command list is also updated to reflect tuegels to the internal
command list of the path object.

Negative Image Strides

Another difficulty in tracing OpenVG arises from the way tiraage data is uploaded
to the graphics engine. Images in OpenVG are similar to testin OpenGL ES: they
can be used to apply regular patterns to shapes and to imagthigs from external
sources such as photographs. When images are uploaded ty@ptbe library al-
lows the application to specify how consecutive pixel rowsaanlines are laid out in
memory. This is done with a property called stride, whichi¢ates how many bytes
there are between the beginning of one scanline and therbegiof the next one. The
stride value may be distinct from the scanline length or thage width due to the
fact that a single pixel may occupy more than one byte of gmradditionally, some
operating systems use bitmaps in which scanlines are riattigacked together, but
instead have a number of unused padding pixels in betweea.patiding is used to
guarantee that each scanline starts at an aligned memanysadegardless of the im-
age dimensions. This is usually done to improve performasinee access to aligned
memory can be much faster than access to unaligned memognos Systems. The
relation between the image width, the number of paddinglgiend the image stride
is illustrated in Figure 22.

The use of padding pixels in images has no consequencesddrater as such,
since we can assume that the padding pixels reside in resadedvhory and the whole
iImage data can be accessed as a contiguous block. HowewvenVQGpalso allows
the application to specify a negative stride value [48 p.]1@9negative stride value
signifies that the image scanlines are stored in reverse, dide is, each scanline is
stored at a smaller memory address than its predecessercareffectively be used to
flip the image vertically while transferring to the graphidsary. Since the OpenVG
graphics coordinate system [48 p. 40] is vertically invelitecomparison to Symbian
OS'’s coordinate system [45 p. 321], negative stride valwuescammonly used to
achieve consistent transfer of bitmap data between the yaterss. This method is
illustrated in Figure 23. In the example, the image sentéagttaphics engine is either
transferred as is or inverted vertically depending on tha sf the stride value.

For the tracer, a significant consequence of negative statlees is that the image
data pointer points to the start of the last scanline of thagen This is in contrast
to the general practice in C, where an array pointer pointheostart of the array
data. In order to save the image data to the trace file, thertraast first calculate
where the scanlines of the image reside in memory. SincerteeTPlayer also needs
to be able to reconstruct the image data in memory, we optethéoapproach of
normalizing the scanline order in memory prior to saving data. This made the
Tracer and Trace Player design significantly simpler, aigfoat the cost of introducing

60

Stride
14 +2 =16
4
r M
Width Padding
14 2
N)\
r I
@ | 000
(N}
v | 016 a
T | o032
© | 048
2 | 064 |
: | seo N ‘m
g | 096
112 || |
128 A
144
160 [
176
v 192

Figure 22. A stride value indicates the memory offset betwtbe start of one bitmap
scanline to the next. Here, the width of the image is 14 ubiisdue to the two extra
padding pixels on each scanline, the resulting stride viglaé units.

a small non-linearity to the tracer: all traced functionis&hat used negative stride
values are converted to ones using positive values in tloe fike. We feel that this

design choice did not compromise the reliability of the sgsin a significant manner,
as the transformation done by the tracer is very straigivtdcd.

Binding APIs

One of the OpenVG engines used in this work did not supporstdedard EGL bind-
ing API. Instead, it exports a proprietary C++ interface @laws drawing OpenVG
graphics directly into Symbian OS bitmaps. This requiredousreate a special vari-
ant of the OpenVG tracer in order to trace applications uilgyengine. This special
binding API also affected the design of the Trace Player vétfard to trace portability;
this matter is detailed in Section 5.3.2 on page 64.

5.2.8. Tracing EGL

In comparison to OpenGL ES and OpenVG, EGL is a simple API¢ciwhias straight-
forward to implement into the tracer. Historically, EGL Hasen bundled in the same
DLL as OpenGL ES on Symbian [52]. With the introduction of QW&, however,
it became apparent that EGL should also be usable indepéypadérOpenGL ES.
This created a motive for having a separate DLL for EGL. Wepsupthis arrange-
ment in our system by generating up to three separate tréarelESGL, OpenGL ES,

61

Application Graphics
memory memory

~— A
Data pointer @/I// AIILL 4 ISL LS /L

Positive

stride

Negative (b % 2 4
stride

Data pointer SIS SIS £ -)

Figure 23. A negative scanline offset or stride is used tticadly mirror image data
passed to a graphics library. Normally, the image strid@sstiyve and the data pointer
points to the top left corner of the image. When a negativdestralue is used, the data
pointer points to the first pixel of the bottom scanline of ilmage.

and OpenVG. Each traced API call is then annotated with aadjppbinique sequence
number, which can be later used to combine the different Adles in a temporally
coherent manner.

One notable challenge in tracing EGL was posed by its exdamaechanism. While
the OpenGL ES and OpenVG specifications define a set of cangésasupported by
the respective graphics API, they also allow graphics engandors to export their
own set of additions to the core feature set. An example ofi sutaddition is a
more efficient texture data format for OpenGL ES or an impddviending operation
for OpenVG. These additions are called extensions, and tleféx using them is
provided by EGL.

If an extension reuses the functions of the original APl,ah de supported sim-
ply by defining the new parameter values introduced by it enttacer configuration.
However, some extensions also include a set of new API fonsti To use an exten-
sion function, an application must first query EGL for a peinb that function. The

A}
1
1
1
]
]
]
]
]
]
]
]
]
]
!

e

m
[9)
=

1 Query function pointer
Extension API
Application [~ Llliiiiiiii-
Graphics engine

.
A\l

.
1
1
1
]
]
]
]
]
]
]
]
]
]
!

I S
1 1
y (N .
' Extension '
2 Call function 1 function ,
AN J)
a) Sommmmmmmmeees ’
1 Query eTTTTTTETTESmmmsmsmsmssEssEees 2 Query oo -

function Tracer function 1 EGL

pointer '

Extension API tracer](
l 3 Save pointer

e

pointer !
L Extension API
\

I
1
1
]
]
]
]
]
]
]
]
]
]
]
A\S

Application

L e e

I Graphics engine ‘:

N\ e Nt

Extension function | , Extension :

4 Call tracer | . function :

function \. J 5 Call A J

b) N e , function v oo o.. J

Figure 24. a) An application queries EGL for a pointer to ateesion function and
then calls that function. b) The tracer intercepts the apfibn’s extension function
guery and substitutes the return value with a pointer tovits extension function.

pointer may then be used to call the function. The problerhasthe function pointer
returned by EGL points directly to the extension functioside the graphics library;
when the function is called, the tracer is bypassed coniplerad the function call
does not appear in the trace file. This dilemma was solved l@ifgiiog the extension
API inside the tracer to return a pointer to the tracer’s owrsion of the extension
function. The pointer returned by EGL is saved and subsdtyuesed to call the real
extension function. This procedure, as outlined in Figutedso works when EGL
resides in a DLL different to the graphics engine.

EGL configuration objects pose a problem for trace portighdis an application can
refer to EGL configurations using opaque identifier numbathomt explicitly con-
structing them through, for instancegl ChooseConfi g . If only the configuration
identifier was saved, it would not be possible to determireetifiective configuration
parameters only by looking at the trace file. These attribate essential for the Trace
Player, since it must be able to find a compatible configunatiben used with a differ-
ent graphics engine. The solution to this problem was ta theaconfiguration objects
as platform-dependant objects similar to windows and kpgnalust as the window
object contains the essential attributes of a window, sscitsavidth and height, the
configuration object stores all the effective attributeshaf EGL configuration in the
trace file.

R

P OWOWOoKL~NOOITA,WNPEF

63

Graphics ' DLL
operations interface
U — Trace Player
—
Trace file Graphics
engine

Figure 25. The Trace Player reads a trace file and executesittesponding API calls
to reproduce the original graphics operation sequence.

voi d gl Col or4f _event (TREvent * event)

{
/= Decode the argunments for the function call x/
GLfl oat red = trCet Fl oat Val ue(event, "red");
GL.fl oat green = trGetFl oat Val ue(event, "green");
G.fl oat blue = trGetFl oatVal ue(event, "blue");
GL.fl oat al pha = trGetFl oat Val ue(event, "al pha");
[+ Call the graphics engine function */
gl Col or4f (red, green, blue, alpha);

}

Figure 26. Trace Player code for tligg Col or 4f OpenGL ES function. The player
first loads the parameters for the function from the tracegfild then calls the corre-
sponding function in the graphics engine.

5.3. Trace Player

The Trace Player is used to reproduce a call sequence recordetrace file. The
basic operation of the tracer is to decode a function andge@ated arguments from
the trace file and then call the corresponding function ingifagohics engine. As seen
in Figure 25, the player is dynamically linked to the graghengine like a regular
graphics application.

Example code for replaying thgl Col or 4f function can be seen in Figure 26.
The program first extracts the four color components standtie trace file and then
calls the graphics engine function with the proper argusiemhis code does essen-
tially the opposite of the corresponding tracer functiofrigure 20 on page 51.

5.3.1. Trace Normalization

The dynamic nature of array data in trace files creates soffieutty for the Trace
Player. As the trace is read and written in a chronologidailar order, the player has

64

identical knowledge of an array associated with a giventionacall as the tracer did
when originally saving the call. Because of this the OpenGLlv&$ex array problem
discussed in Section 5.2.5 on page 55 also affects the TiagerP When a vertex
array pointer is first set, the array contents are undefinkis. i$ because the length of
the array is not known until geometry is drawn using it. Relgaslof this, the player
must be able to supply a valid pointer for OpenGL ES when diggthe vertex array
function call. Furthermore, the memory region referencgthk pointer must be large
enough to accommodate all data that is assigned to it durageimainder of the trace
file.

Solving this problem while maintaining the chronologidaklarity of the Tracer and
Trace Player required us to add a separate offline prepiiagessp for trace files. This
normalization operation amends the trace file in a way theastbred array objects are
always fully defined before their first reference. An alténeaapproach would be
to make the tracer seek back and change parts of the alreattignwtrace when an
array becomes defined. Given the elaborate output buffenechanism in the tracer,
this option was not feasible. Similarly, having the TracayRl scan the full trace
file to establish its contents prior to playing it would haeeluced performance and
complicated the design of the player.

5.3.2. Trace Portability

Trace portability is the ability to replay a trace with a dmvand graphics engine other
than which was originally used to record the trace. To makephbssible, the Trace
Player must anticipate and work around the differencesé@tthe environments used
for trace playback. In the following section we discuss s@asects of trace files that
may compromise their portability.

Platform-dependent Objects

The most obvious issue inhibiting trace portability is tise wf native operating sys-
tem resources, which are almost guaranteed to be incongatikifferent systems.
Windows and bitmaps are examples of strongly platform-ddpet objects commonly
used by graphics applications. The Trace Player managéseseources by abstract-
ing them into a portable representation of their esserttidbates. These attributes are
then used to construct equivalent resources on the playattkrm.

A common pattern in APIs is to first call one function to createobject and then
pass a reference of that object to a number of other functidie reference to an
object is usually a pointer or another type of opaque nuraehiandle. In general, the
concrete values of these object references are arbitiagg they may be based on
memory addresses and other non-deterministic quantfesn this follows that ob-
ject references stored in trace files are unlikely to cowadpo live objects in memory
when trace is played back. For example, consider the fatigyarocedure of con-
structing an image and copying pixel data into it in OpenVG:

1 VG mage i mage = vgCreatel mage(...);
2 vgl mageSubDat a(i mage, data, ...);

65

Here the return value of the first function call is the refeeio the image object.
This reference is then passed to the image data transfetidario designate the tar-
get image. When this application is executed and tracedntage object might get
assigned the identifier numbg7. On a different platform, graphics engine, or even
invocation, however, the image might get a completely dzffe identifier. For this
reason, the Trace Player keeps track of object creationsedecences while execut-
ing traces. In the above example, the image creation commanses the tracer to
translate all future references to tM&l nage object numbeR7 to the new identifier
returned by the graphics engine. The object type must alsobsidered while doing
this remapping, since objects of different type may well bsigned the same identi-
fier. The same approach is applied to all object referencéseitrace file. This also
includes objects that are not explicitly constructed byaged function calls, such as
windows and EGL configurations, since their identifiers amalarly not fixed.

EGL Configurations

The EGL configuration mechanism requires special condidera order to guarantee
trace portability. As mentioned in Section 5.2.8 on pagete@full set of properties
of EGL configurations are saved into the trace file. When a cordigon object is

referenced, the Trace Player uses this information to finditaldy close match for
the original configuration from the current graphics engiflee player will optionally

relax some requirements of the configuration until a corbpatnatch is found. The
trace file can also be modified to force the use of a particulank configuration if a

fuzzy match is not desired.

As discussed in Section 5.2.7 on page 58, one of the OpenV@emngsed in this
work used a proprietary binding API instead of EGL. To engbet a trace using one
binding APl is playable on a platform using the other API, trexer includes code
that emulates the essential features of one API using tlee 8iRl. This approach was
preferred over modifying the function calls in the trace figelf, since the emulation
code is quite straightforward.

5.3.3. Performance Considerations

As the Trace Player is designed to be used in benchmarkinigypgnce is an impor-
tant aspect of the implementation. The internal procesgqggirements of the player
are quite modest, since it does not need to perform any exéestsite processing or
tracking. For this reason, the playback speed is essenlialited by the trace file

decoding rate. The design of the asynchronous tracer ohtgfgr was adapted into
a similar input buffer mechanism for the Trace Player. Thifidy is filled by a dedi-

cated reader thread, which strives to keep the player f¢plith function call data.

If memory permits, the buffer size can be increased to enessithe entire trace file
to maximize performance.

66

Content statistics

RRRRRR

Tracer

N S ;
= project
7

Data export

Trace Analyzer

&
0

Ij Performance
Trace m checklists
file

C source code
U

Instrumented Scripting

graphics
engine

Figure 27. The Trace Analyzer is a versatile tool for editirage files and extracting
data from them.

5.4, Trace Analyzer

The Trace Analyzer is used to examine and process the biraary files produced by
the Tracer. The main purpose of the tool is to enable prdd&ta extraction. An

average trace file contains tens of thousands of API callsraghbytes of additional
data. The analyzer provides access to data from the levesiofyée event to statistics
that span the entire trace.

An overview of the Trace Analyzer and the data flow througk ghown in Figure
27. Although the main focus of the analyzer is on the extoactif data from the trace
files, it also has functionality for editing trace files as b&s synthesizing completely
new traces.

In the following, we discuss the major features of the Traocalgzer tool.

5.4.1. User Interface

The primary user interface of the analyzer is a command promtpe spirit of interac-
tive debuggers such as the GNU GDB [53]. The interface altbwsiser to manipulate
one or multiple trace files at once using a number of low- agthHevel commands.
This interface can be operated both interactively and viaraated scripts.

The analyzer interface is based on a simple procedural cohiaaguage. It offers
a set of generic commands, which work with all traces regaslbf the used API, as
well as a number of special commands to deal with OpenGL E®gethVG-specific
entities. The user can also extend the language with cusbommands. The built-in
commands available for the user are show in Table 2.

67

Table 2. Commands for controlling the Trace Analyzer.

calc-frane-stats
cal c-stats

cal | - hi stogram
checkl i st

cl ose

export

extract
extract-state

grep
hel p
info
join
list
| oad
| oad-i nst

mer ge

new

pl ay
profiling
pyt hon

qui t
r el oad

r enunber

report
save
save-i nst
sel ect

set-egl-config
show pl ugi ns
show st ate
sinplify

For each frame marker event, calculate the sum of the in-
strumentation data for the intermediate events.

Calculate some derived OpenGL ES statistics based on in-
strumentation measurements.

Show the function call frequency histogram for a trace.

Run a GLES trace through a checklist of common perfor-
mance issues.

Unload a trace file.

Export a trace to a file in a special format.

Extract a portion of a trace to form a new trace.

Extract a portion of a trace including the preceding state to
form a new trace.

Search for events matching a regular expression.

Show available commands or help on a specific command.
Show information about a trace.

Join two traces together to produce a new, third trace.

List events contained in a trace.

Open a trace file.

Load previously computed instrumentation data for a trace
file.

Merge two traces to produce a temporally coherent third
trace.

Create a new empty trace file.

Play back a trace file using a generated trace player.
Enable or disable call profiling for all executed commands.
Run an interactive Python interpreter that can be used to
manipulate the loaded traces.

Exit the analyzer.

Reload the analyzer modules while keeping all loaded data
intact.

Renumber a trace so that the events contained in it start at
zero.

Generate a performance report of a trace.

Save a trace to afile.

Save the current instrumentation data for a trace file.
Choose events from one or many traces based on a condi-
tion.

Force the usage of a particular EGL config in a trace.

List the loaded analyzer plug-in modules.

Print out the computed API state at a particular trace event.
Remove redundant OpenGL ES commands from a trace.

68

EGL
instrumentation
extension

—
Trace player -’

/ Instrumented

graphics
engine

1@

-

Trace Analyzer

Trace
file

(CC

Instrumentation
data

Figure 28. The Trace Analyzer uses specially instrumenigehGL ES and OpenVG
engines to extract detailed content statistics from a tiigeeThe analyzer plays back
the examined trace using the Trace Player, which in turnigsi¢ne instrumentation
sensor readings from the engine via the EGL instrumentatension.

5.4.2. Trace Manipulation

An essential feature of the analyzer is the conversion aryitrace file data into other
formats. The range of output formats spans from simple &dall sequences into
more complex representation such as C source code. Thezanalgo allows the

extraction of a specific data subset, such as the collectioexture images from an

OpenGL ES trace. Saving a trace in the binary format norreglthe trace data as
required by the Trace Player.

The trace editing capabilities of the analyzer are basedvorfundamental editing
operations: extracting and joining sequences of ser@liaaction calls or events. In
the extraction operation, a new trace is formed from a caotig subset of an existing
trace. Conversely, the joining operation takes two existiages and merges them to
form a new trace. These basic low level operations form tkeskiar higher level trace
manipulation functions, which can operate on larger e#isuch as graphics frames
and non-contiguous event sequences.

Instrumented Engines

In addition to retrieving data directly stored in the trade, fihe analyzer can be used
to calculate more detailed measurements by playing backrdle file using a cus-
tom graphics engine with integrated statistical sensonese statistics can be used to
derive high level content features for the graphics catisest in a trace file.

To obtain these statistics, the analyzer employs the TrigePin conjunction with
an instrumented graphics engine. This arrangement carebers€igure 28. First, the
analyzer instructs the player to start executing the exadiirace file. While replaying
each function in the trace file, the Trace Player queriestest instrumentation sensor
values from the graphics engine and saves them to a data fileen\tfie playback
is complete, the Trace Analyzer reads the instrumentatada file, making the data
available for the user.

We designed an EGL instrumentation extension for providnegTrace Player with
a consistent and portable way of extracting the instruntiemalata from a variety

69

Table 3. Content features and statistics provided by thegiAaalyzer and the instru-
mented engines.
Common content features

API calls Timestamp, duration, call histogram, array datfit,
frame duration, EGL configuration attributes

Buffer snapshots Color buffer, depth buffer, stencil buffer

OpenGL ES

General Matrix operations, render calls, texture uploads

Primitives Submitted, degenerate, frustum culled, bawkfaulled,

clipped, discarded, rasterized

Vertices Submitted, transformed, viewport transformetl,clache

accesses, cache hits

Rasterization Fragment count, texture fetches, averagegie size, dis-

carded fragments, estimated overdraw

OpenVG

General Matrix operations, render calls, image uploadspgty
reads/writes

Objects Creations, attribute reads/writes

Paths Segment count, coordinate count, tessellated pwolygo
edges, accepted polygon edges

Rasterization Fragment count, estimated overdraw

of graphics engines. The extension allows a graphics engiegpose a humber of
discrete instrumentation sensors. Each sensor is assbaath a name, a textual
description, and an integral or floating point number intingathe value of the sensor.
The extension defines a number of functions that the TracgePleses to query the
various types of sensor data during runtime. Additionaly extension allows the
player to access a number of buffers inside the graphicsenguch as a color buffer,
depth buffer or a stencil buffer. The player can optionallyesthe contents of these
buffers into files. In this way, each event in the trace file barassociated with an
image of the frame buffer at that point in time.

The analyzer can augment the collected data by calculatargd-level averages
and converting the frame buffer snapshots to a standarderilagormat. It can also
calculate some additional API-specific metrics, such thewrhof uploaded texture
data for OpenGL ES, without the aid of an instrumented engine

The set of content features provided by the instrumentedhesgs designed to
be easily extendable upon demand. The implemented feaduedssted in Table 3.
As shown, some of the higher level features are API neutrailevihe more specific
statistics do not translate directly between APIs.

70

5.4.3. Content Statistics and Graphs

The main purpose of the Trace Analyzer tool is data extractis an average trace
file contains tens of thousands of API calls and megabyteddifianal data, practical
means of finding the essential features of that data are dedthe analyzer provides
access to data from the level of a single event to statidtaisspan the entire trace.

A simple but convenient method of examining binary tracesfifeto convert them
to an equivalent plain text file. The textual trace formatudes all the same events,
parameters, return values, and timing information as ttggad binary file in an easy-
to-read format. Additionally, the text format exporter gamt content feature values
next to each listed event and truncate large data arraysasitéxtures to make the
output more manageable.

While the text format is practical for casual use, more sdjuaited ways of ex-
changing data with other programs are also needed. Theyneaversally-supported
comma separated value or CSV file format can be used to trahsf@rstrumentation
sensor readings and other statistics to other dedicatézidooch as a spreadsheet.

The detailed event-level view of the analyzer is complemeérly a number of
higher-level abstractions. The performance checklishigRBl-specific utility, which
verifies a trace file against a set of predefined conditionesé&ttonditions test for
known performance deficiencies and other unwanted cabipatt Some of the check-
list items apply to all graphics engines, while others arecHjT to the characteristics
of a certain implementation. The tests included in the OpeRBG checklist are listed
in Table 4. Some of the checklist items are based on an Oper&gr&phics opti-
mization guide published by Nokia [54].

Should any of the checks fail, the analyzer provides the witéra list of the of-
fending events that triggered the failure along with a taktlescription of the detected
quality problem. In effect, the performance checklist ie&pert system in the domain
of vector graphics that can automatically provide a rougdliguestimate of the traced
application.

Since a trace file analysis commonly revolves around graplssues, the analyzer
also provides visual methods of browsing its contents. T ¢an generate a re-
port document, which contains both an overview of the whiaed in terms of event
timings, instrumentation sensor readings, renderingetardoaded textures and other
statistics, as well as a detailed breakdown of selectechgraframes. To cut down on
the output size, the report generator can automaticallpgh@ number of represen-
tative frames. This selection process is done by comparargd durations and color
histograms and discarding sequential frames that are noitasi We chose to use the
Bhattacharyya histogram distance measure [55] due to itschdaulation overhead
and sufficient classification capability.

5.4.4. State and Frame Extraction
Trace files commonly encompass all the graphics calls madatapplication while

it is running. Only a small part of this data is often necegsawaking the bulk of the
trace file largely superfluous. To make it easier to focus oaraiqular part of a long

71

Table 4. Items included in the OpenGL ES performance ch&tckli

Mipmap usage

Mipmap filtering reduces memory accesses and
improves image quality, bilinear filtering is a
cheap way to improve image quality on hard-
ware engines.

Synchronous functions

Functions that cause the CPU to wait for the
GPU may have a dramatic negative effect on
performance.

Depth buffer clearing

Failing to clear the depth buffer may have a sig-
nificant performance penalty on some architec-
tures.

Vertex buffer object usage

Using vertex buffer objects reduces memory
bus bandwidth utilization on some architec-
tures.

Renderer version string dif-
ferentiation

Test whether the OpenGL ES renderer version
and extension strings are being examined for the
presence of extensions providing better perfor-
mance. For a software renderer, the complexity
of graphics content should be scaled down.

Existing texture data modi-
fication

Modifying existing texture data is an expensive
operation on most renderers.

Loading texture data dur-
ing frame rendering

Generally texture data should be pre-loaded
during the startup phase and only if needed dur-
ing runtime.

Texture data compression

When supported by the hardware, texture data
compression decreases memory usage and im-
proves rendering performance.

Triangle strip geometry

Using triangle strips reduces the need to process
the same vertices more than once and improve
rendering performance for complex meshes.

Multisample usage

On hardware engines, multisampling improves
image quality with only a small performance
cost.

trace file, the analyzer can be used to extract a sequenc#gfroen a trace to form a
new smaller trace.

Simply extracting the selected calls is often not enougttesthe objective is usually
to also preserve the rendering output, that is, the effettetalls. For instance, the
application might have loaded a number of textures dursaitialization phase, and
that texture data will also need to be resident when the eetleframe is played back.
If the extracted frame, however, does not need these textilney can be automatically
discarded to reduce the size of the trace file.

Both the OpenGL ES and OpenVG design is based on the concegtaiéanachine;
the graphics engine has an internal state that is modified UsPl calls. As the state
is implicitly stored inside the graphics engine, the bebawif each API call depends

72

Frame 1 Framie 2 nan Flame N - 1 Frame N IFrameN+1J

Time \ \ \ /

\ 4

State setup Frame N

Figure 29. A single frame is extracted from a trace file. Thec&Analyzer uses state
tracking to determine which preceding graphics commanelgso needed to ensure
that the rendering output of the extracted frame will be igahto the corresponding
frame in the full trace. These extra commands are then adsdnmto a state setup
sequence.

on the currently active state. Thus, it follows that the bédreof API calls depends on
the API calls made prior to them.

The process of extracting a single frame along with the astaut state setup API
calls is illustrated in Figure 29. When a sequence of everggtigcted from a trace
file, the analyzer calculates the effective state at theaetitm point. The API calls
that have been used to prepare the state are then prepenttexlaxtracted frame.
This ensures that the rendering output of the extractedesawill be correct. Note
that the state setup API calls may appear anywhere in thegiragtrace section, and
that only the required subset of the preceding calls areided. In other words, the
analyzer strives to find the minimum number of calls needathifil result in the same
effective state at the beginning of the extraction point.

The state computation and extraction algorithm builds enstlate tracking system
described in Section 5.2.5 in page 55. Recall, that the statkdr describes how API
call parameters map to the branches of the internal API staée The state paths
describing these relations are used by the extractionitiigoto collect the set of pre-
vious API calls that have affected the state. The algorithiveised on the observation
that an API call is a prerequisite for a second API call if desgmth associated with the
first call is a prefix for any of the paths associated with tlewed call. For instance, as
seen in Table 1 on page 57, tlgg Bi ndText ur e function is clearly a prerequisite
for the gl TexPar anet eri function, since the state paths of the former call appear
at the start of the paths of the latter call.

Furthermore, an API call is said to be eclipsed or invalidatell of its state paths
can be matched to an identical path of a successive everd.h@ppens, for example,
when the rendering color is set twice in a row. As the secotar cifinition overrides
the first one, the former API call is eclipsed by the latter and can be discarded.

The state extraction algorithm works by collecting evegcé event prior to the
extraction point to a list of effective state setting evelithien an event is added to the
list, all the events eclipsed by it are removed from the I&imnilarly, when an event
Is removed from the list, all its prerequisite events areaesd, provided that they are
not prerequisites for any other events. This algorithm peed a minimal list of events

O~NO O WNPF

73

Choose a reduction factor of 1/8ths
factor = 8
lterate over each event in the trace
for event in trace.events:
Choose only texture upl oadi ng events,
1.e., gl Texl mage2D, gl TexSubl mage2D, etc.
if event.nane.endswith("l mage2D"):
wi dt h = event.val ues["wi dt h"]
hei ght = event.val ues["hei ght"]
newSi ze = (max(1, wdth / factor), max(1, height / factor)),
Replace the texture data with a scal ed version
event . val ues["pi xel s"] = resanpl e(

pi xel s = event.val ues["pi xel s"],
si ze = (width, height),
newSi ze = newsSi ze,

type = event.val ues["type"],
format = event.values["format"])

event.val ues["w dth"] = newSi ze[0]
event . val ues["height"] = newSi ze[1]

Figure 30. A simple script that automatically reduces tze sif OpenGL ES textures
to one eighth of the original. This is done by routing the piata of each texture
upload function through a esanpl e -function (not shown).

that, when executed, will reproduce the same state that fiexgiee at the extraction
point.

5.4.5. Scripting Interface

Due to the component’s high level nature and open-endedrezgents, the trace an-
alyzer was written in the Python programming language. Thwice allowed us to
implement an extensible plug-in architecture as well asgrated scripting support
in the form of user-supplied Python scripts. The scriptingiface facilitates quick
ad hoc trace analysis and processing without having totrésareating a dedicated
program for the task.

An example of an analyzer script is shown in Figure 30. Them reduces the
size of each texture in an OpenGL ES trace file to 1/8th of tigaral. This is done

by modifying thewidth andheight parameters of each texture upload function found

in the trace. The script could be used to test how varying theust of texture traffic
affects a program’s performance.

A OWDNPRP

~N O O1

74

> SELECT event.seq, event.nane, event.duration FROMtrace
VWHERE event . duration > 10000;
event.seq | event.nane | event.duration

985 | egl SwapBuffers | 15000
1255 | egl SwapBuffers | 11250

Figure 31. A query that returns all graphics operationsrdwatonger than 10 millisec-
onds.

5.4.6. Trace Query Language

In the spirit of the relation debugger work by Duca et al. [3B¢ Trace Analyzer also
offers a similar, albeit somewhat simpler, relational guanguage for extracting data
from trace files. The syntax of the language is based on thaate tlatabase stan-
dard SQL. A limitation with our implementation is that onlyet SELECT-statement
IS supported; existing trace file elements cannot be modifiezligh the query lan-
guage. If needed, this can be accomplished with the Pythgstiag system described
in Section 5.4.5.

The workflow with our query language is the same as with SQ& utber submits a
textual query expression to the analyzer, which in turnoadp with a tabular list of
rows of data matching that expression. An example queryas/shn Figure 31. The
guery instructs the analyzer to look through all graphiocsrapons in a trace file and
return the ones that match the conditions specified in the WHERESe. In this case,
the returned events will be those with a duration longer tt@amilliseconds.

A slightly more complex query is shown in Figure 32. When aggplio an OpenVG
trace file, this expression indicates thegDr awPat h commands that resulted in
fewer than 16 pixels being drawn to the screen while the dnaath contained more
than 10 segments. In other words, this query attempts tdigigtcomplex OpenVG
geometry being drawn at a small scale, where the highly lddtpath coordinates are
superfluous and may result in poor performance.

5.4.7. Exporting Traces as C Code

Although the Trace Player can be used to reproduce any ezhgiraphics call se-
guence stored in a trace file, it does have a number of lirarati Firstly, the player

must be separately ported to every operating system on wthighsed. Furthermore,
it may have higher memory and storage space requirememtshbariginal applica-

tion, as the graphics commands need to be read and decodethizdrace file. Also,

a trace file is of no use to a third party, unless the playerss dklivered. These is-
sues limit the utility of the Trace Player, especially in @péenvironments such as
prototype hardware and as a part of automated testing system

ga s wWwN Pk

0 N O

75

> SELECT event.seq, event.nanme FROM trace
WHERE event . sensors. average_path_size < 16 AND
event . st ate. pat h. segnent _count > 10;
event.seq | event.nane

34 | vgDrawPat h
71 | vgDrawPat h

Figure 32. A query that highlights complex OpenVG paths dratva small scale.
This is done by looking for paths that consist of more thandghsents and produce
fewer than 16 pixels when rasterized.

The Trace Analyzer provides a way to overcome these liritatby converting a
trace file to an equivalent C source code file. Each graphiesatipn in the trace file
is converted to a corresponding function call in the soumec When compiled and
executed, the generated code reproduces the originaldegteence. As the code uses
only standard C language constructs and the relevant gaptitl functions, it can
be run on a wide variety of platforms with relative ease. 8itie code has a limited
number of external dependencies, it may be given to a thiry pano is unable to run
the original application due to licensing, platform, or@tlconstraints.

Some special considerations need to be taken into accowm génerating C source
code from atrace file. Asitis not uncommon for a trace file totam tens of thousands
of graphics commands, the resulting C source code quickigtres the limits of most
compilers. In particular, the amount of code contained ifngle function is often
quite limited. We worked around this limitation by splitirup each frame of the
graphics trace to a separate function and generating twty dtinctions for playing
back one or all of the frames. However, some extremely la@eetfiles failed to
compile even with this modification due to the large amoun&réy data contained
in them. The solution was to direct the array data into a sgparssembly language
source file, which was then linked together with the gendr&teeode. As assembly
language compilers are much simpler than C compilers, the Emount of array data
did not pose any difficulty for them. Our system supports kbthRVCT and GNU
assemblers.

In addition to calling the correct functions, the generafedode also must ensure
that proper data is stored at all times in the various da&yarappearing in the trace
file. This is done by generating code that updates the cantémtach array whenever
the trace file indicates that the underlying data was changeslthe array data is
stored directly in the source code, this method has velg lerformance overhead.
An additional constraint for the generator to consider & Hrray data is polymorphic
in the sense that a given array may store objects of any typeddits lifetime. For
example, the same memory block might be reused by an apphdat hold floating
point vertex data at one point and byte-form texture dataetteer. The code generator
manages this by creating a separate virtual array for eantret type of an array.

76

The static typing of C places some requirements for the géeercode. This is
most evident in the fact that the types of function paransetenst match those de-
fined in the function prototype. To ensure this, the code gdoereplaces numeric
constants with their symbolic equivalents. For added coevee, it also reconstructs
bit fields with the original symbolic flags. For instance,téed of the numeric con-
stant 16440, the user will see the expressiGn COLOR BUFFER BIT | G__-
DEPTH _BUFFER BI T passed to theyl Cl ear function.

As discussed previously, trace files may also contain a huofq@atform-specific
objects such as windows and bitmaps. In the file, these abgeetdescribed by their
essential attributes, such as the on-screen coordinatiee gase of a window. If such
objects are encountered in the trace, the C code generattesra function call to a
user-supplied function. This function is responsible fiating an object instance of
the appropriate type when given the attributes of that abjéhis scheme facilitates
practical portability of trace files that contain platfospecific elements, since the user
only needs to implement these object construction funstmrce for a given platform.

Figure 33 shows an example of C code generated from an Opera¢6. tThe file
begins with the declaration of the objects used in the triacehnis case,CFbsBi t map
is a Symbian bitmap object, which will hold the final rendemaége. Note that on a
platform other than Symbian, this object can be implementadg the native bitmap
equivalent of that platform; the only requirement is that tibject is compatible with
the used EGL implementation. The creation of the bitmapatbhgedone through a
user-supplied function on line 17. Theni t function constructs all platform-specific
objects used in the trace.

The object definitions are followed by the data arrays cairigi the actual array
data. Arrays and the data contained in them are declaredatelyaas a single array
may hold multiple sets of data during its lifetime.

Finally, the f rame0 function holds the actual OpenVG code for the first frame of
the trace file. The code uses the objects and arrays definest @athe file. Note how
the identifier constants have been given human-readablesieinmake their meaning
apparent.

CO~NO OIS WNPEF

77

[+ Cbjects */
static CFbsBitmap* cfbsbitmap_35f e3f 48;
static VGPai nt vgpaint_2;

[+ 15 arrays x/
static V&I oat vgfloat_arrayO[5];
static V&Il oat vgfloat_arrayl[15];

[+ Array data =*/

static const V&Il oat arraybDataO[9] = {
5. 324997f, 0.000000f, 0.000000f, 0.000000f, -5.324997f,
0. 000000f, 0.249924f, 445.000000f, 1.000000f

1
static void init(void* context)
{
[+ CFbsBitmap attributes: w dth, height, node x/
cf bsbi t map_35f e3f 48 = creat eCFbsBi t map(context, 320, 445, 0);
}
static void frameO(voi d+ context)
{
vgSet i (VG_RENDERI NG QUALI TY, VG _RENDERI NG QUALI TY_BETTER) ;
vgpai nt_2 = vgCreatePaint();
LOAD ARRAY(vgfl oat _arrayl4, arraybDatalO, 4);
vgSet f v(VG_CLEAR COLOR, 4, vgfloat_arrayl4d);
vgSet Par anmet er f v(vgpai nt _2, VG _PAI NT_LI NEAR_GRADI ENT,
4, vgfloat_arrayl0);
vgCQ ear (0, 0, 320, 445);
vgAppendPat hDat a(vgpat h_5, 343, vgubyte_ array4, int_array3);
vgDr awPat h(vgpat h_5, 2);
}

Figure 33. An abbreviated C source file generated from an @@drace file.

78

6. USE CASE DEMONSTRATION

The purpose of this chapter is to demonstrate how each obtieeuse cases originally
presented in Chapter 4.3 on page 39 is performed using théniBsaQuality Analysis
Toolkit implementation.

6.1. Unsatisfactory Application Performance

The first use case illustrates how the Graphics Quality Asialjfoolkit is used to
look for causes behind the poor performance of a graphicBcagipn. The appli-
cations used in this example are an OpenGL ES-based imalgeygabplication and
an OpenVG-based SVG animation player. The gallery apjpbicatllows the user
to browse digital photographs, while the SVG animation ptagproduces animated
SVG files. Both applications are run on a Nokia N95 smartphatte 860 3rd Edition
Feature Pack 1 system software. This device features a 2246itby 320 pixel dis-
play with a hardware accelerator for OpenGL ES 1.1 and a softwnplementation
of OpenVG 1.0.

The process begins with the generation of suitable OpenGar@®penVG tracers
for the targeted Symbian platform. These tracers are theapided and integrated into
a regular system software image for the N95. Installingithege on the device yields
an otherwise normal smartphone, except that selectedgrsgusing OpenGL ES or
OpenVG have their graphics commands silently saved to a filac The image gallery
application and the SVG player are then installed and rurherdevice, resulting in
one trace file for each application.

Both of the trace files are then loaded into the Trace Analyabich is used to
produce the initial high-level statistics shown in Tablé5th traces are also converted
into a plain text format for a quick reference as to which giep operation sequences
each application was using.

It was immediately apparent that the performance of the engadlery application
IS not at a sufficient level: the application barely renders tyame per second, which
is far below the interactive limit of 10 frames per secondrtirer analysis of the appli-
cation’s graphics trace reveals a number of possible cdas#ss deficiency. A large
portion of the graphics calls made by the application aree statup calls that modify
the rendering library parameters. This is not uncommonsielfit as the majority of
the available OpenGL ES API calls are for state manipulatlarthis case, however,
most of the state setup commands are redundant. That isateeysed to set the
same state over and over again and thus have no effect. A coroatigpattern seen
in the application is shown in Figure 34. The redundant alig sequence on lines
1 through 7 often repeats hundreds of times before any atndering takes place.
With the Trace Analyzer’s state tracking functionalitystdetermined that over 70% of
the image gallery application’s graphics calls were re@mdThis is in sharp contrast
with other examined graphics applications, where the sagnedfis usually below 5%.
Although graphics drivers are often optimized in a way thastrof such redundant
state toggling is culled from the stream of commands seritaég@taphics accelerator,
this high amount of essentially useless graphics commatatsund to have an impact
on performance.

79

Table 5. An overview of the captured trace files. The bar shadicate the number of
frames drawn per second during the application’s execution

Image gallery | SVG player
Trace file size| 9.2 MB 13.2 MB
Duration | 28 s 39s
Graphics operations | 19482 234114
Frames | 32 548
Frames / second ... 1.14 | bl 14.05

A second observation made from the image gallery trace idattye quantity of
texture data uploaded by the application. As shown in Fi@frea significant per-
centage of rendered frames involve a sizable amount ofreextata transfer up to a
total amount of 12.5 megabytes. The texture transfer radepgendent on the graph-
ical content of the animation at each point in time. While tkisomewhat expected
behavior for an application dealing with image-based ationaa closer examination
reveals that a number of textures used by the applicatiold dmieliminated without
changing the graphical end result. On a number of occask@application uploads
a texture only to moments later replace the contents of raesexture with a new
one without using the original texture image at all. This@ades a possible flaw in the
application’s texture management logic. In addition testhenused textures, the Trace
Analyzer highlights a number of cases where the applicatiodifies the contents of
a texture immediately after using it. Such action may irthibndering parallelism,
since the graphics library must wait until the graphics &egor is finished with the
texture or make a new copy before changing its contents. ddiphg textures is often
an expensive operation, and especially so in the case ofdk@MI95, since the tex-
ture data needs to be converted into a specific format useuechyraphics accelerator.
Due to this it is often beneficial to limit the number of tex@damused by an application.

A third issue uncovered from the image gallery trace is tloe tliaat on two occa-
sions, the application destroys its main rendering surféawe recreates an identical
surface immediately afterwards. Apparently this is don@ assponse to the appli-
cation window moving to a different region on the screen. ISexplicit processing
IS unnecessary, since the EGL windowing system interfaceages the interaction
between the rendering surface and the underlying nativdawrautomatically.

While the performance of the SVG player application is comsbly better than
that of the image gallery application, it also suffers fromuamber of inefficiencies
in its implementation. As shown in Figure 36, this applioatialso utilizes a con-
siderable amount of pixel image data. While SVG files gengdl not employ pixel
images, the animation in question uses them as an optimizatomplex vector shapes
in the animation are replaced with static image impostetss & often a good way
to improve performance, especially on software rastesjzg@nce they typically draw
Image bitmaps faster than very complex vector shapes. drctige, however, this op-
timization uncovers a rather large inefficiency in the SV@&ypl: instead of uploading
the imposter images once and then reusing them repeatbdlplayer uploads the
same image data over and over again. This is quickly confifoyegktracting all the
used OpenVG images into regular image files with the analy&srwith textures in

P OWOWOWLW~NO O~ WNLPRE

e

80

gl Loadl dentity()

gl Transl at ex(x=0, y=0, z=-524288)

gl Sci ssor (x=0, y=0, wi dth=240, hei ght=320)

gl Sci ssor (x=2, y=264, wi dth=40, hei ght=30)

gl Transl at ex(x=1280, y=10496, z=0)

gl Scal ex(x=15805, y=15805, z=0)

gl Col or4x(red=65536, green=65536, bl ue=65536, al pha=0)
gl Loadl dentity()

gl Transl at ex(x=0, y=0, z=-524288)

gl Dr awEl enment s(mode=G._TRI ANGLES, count=6, ...)

Figure 34. Redundant state setup in the image gallery apipicaonsisted of hun-
dreds of repetitions of lines 1 through 7. EaghLoadl dent i ty call discards the
work done by the previous matrix manipulation commands. il8ity, calling gl -
Sci ssor multiple times without rendering anything in between serme practical
purpose.

1400 T T T T T T

1200 |- .
1000 - _
800 | -
600 -

=~ Ml 0 o o] e

25 30

Uploaded texture data [kilobytes]

0 5

Frame

Figure 35. Texture data uploaded by the image gallery agipdic as a function of
time.

OpenGL ES, this image traffic can be a very large burden depgiot the underlying
OpenVG engine.

The trace file also reveals that in addition to images, the $V&ger also destroys
and recreates every other used OpenVG object at each drapergtion. The entire
animated scene is built from the ground up for each framen @va small part had
changed in comparison to the previous frame. This strategery efficient in terms
of memory usage, since each OpenVG objects exists in menmbyyndile it is being
used. A major downside is that the OpenVG engine cannot agpphextensive opti-
mization strategies, since its knowledge of the graphiesads effectively reset after
each drawing operation.

In both cases, the major contributors to the observed padoce problems were
found to reside in application code. The performance olagemns discussed above of-
fered valuable input to the application developers in fargperformance optimization
work. Undoubtedly the same performance issues could haeebalen detected with

81

400 1

2
S 350
o
T 300
I 250 —
©
o 200 _
g
E 150 —
B 100 -
B
9 50 _
[=N I—
= 0 I

0 100 200 300 400 500 Frame

Figure 36. Image data uploaded by the SVG player applicatsoa function of time.
Frame captures from the animation are shown above the graph.

a careful review of the respective source code of both agipdins, but the key benefit
delivered by the Graphics Quality Analysis Toolkit herehs greatly reduced effort,
higher level of automation and easier data extraction wienpared to the source
code review.

6.2. Visual Error in Application

The second use case concerns an application with a cleailylevivisual rendering
error. Figure 37 shows an example where an OpenGL ES appiicdisplays in-
valid graphics with missing triangles and generally ditdigeometry. Here the Trace
Player is first used to replay the trace file from the applcatn a reference engine.
This produces a correct visual output, which indicates tihaterror is caused by the
graphics engine.

In this use case demonstration we use two applications: an@p ES performance
benchmark and an OpenVG SVG image viewer. The used hardwafiggration is
identical to that of the first use case. The process of tratiegffected applications is
also performed as described before.

The OpenGL ES benchmark application works by rendering abeurof different
animated scenes and measuring how quickly each scene is tathe graphics li-
brary. The visual error in this case is a very apparent one:vamle scene from the
benchmark is missing and nothing but a blank screen is disgdlaThe application
functioned properly on other devices, leading to the caioluthat the error is caused
by a defect in the graphics engine of this particular device.

The benchmark graphics trace is loaded into the Trace Aaadizd the Trace Player
is used to locate the time range of the missing scene. Subs#ygone graphics frame
is extracted from the missing scene. The trace player is tised to verify that the
extracted frame still reproduces the error on the hardwavecd. This confirmation
allows the analysis to focus on the relatively simple sirfigdene containing only 420
graphics commands instead of the full trace of 39 994 comsand

82

Figure 37. a) An OpenGL ES application is exhibiting a vi®rabr. b) The application
trace produces a correct visual output on a reference grsygngine, indicating an
error in the first engine.

As described in Section 5.4.3 on page 70, the analyzer ieslad automated check-
list utility that looks for predefined call patterns in trddes. In this case, the checklist
indicates that the benchmark application is using ¢fheCol or Mask function. This
function is used to restrict rendering output to a subsehefred, green, blue, and
alpha color channels. Normally this would not have been &lpro, but in this case
it was known that the OpenGL ES hardware of the Nokia N95 mayadorm color
masked rendering correctly under all circumstances. Tkeision is quickly veri-
fied by disabling the color mask command in the trace file apthygng the trace on
the device. With the modified trace, the missing scene isredt albeit with slightly
incorrect rendering due to the removed color mask setting.

With the problem isolated, the next step is to prepare aatsdltest case for repro-
ducing the issue. This is done by using the Trace Analyzeutonaatically convert
the extracted graphics frame into equivalent platfornepehdent C source code. This
source code is then sent to the graphics hardware vendolisvalide to use it to fix the
underlying defect in the graphics driver. The graphics wenebuld have been unable
to use the original benchmark application directly, siriée not compatible with their
development platform.

The visual error exhibited by the SVG image viewer applaatis more subtle:
a complex SVG drawing was otherwise fully rendered, exceptaf small missing
geometric shape. As the graphics trace taken from the apiolicindicates no obvious
faults, the next step is to test whether the absent shapaisedady an error in the
OpenVG renderer or the SVG viewer application itself. Tlaeérfile is replayed on a
number of other OpenVG renderers, including the OpenVQeefe engine. In each
case, the output is essentially identical to that of theioaigrendering: the missing
shape is also missing with the other engines. Based on thimdinthe defect can
be classified as being caused by the SVG viewer applicatibis donclusion is later
confirmed in further analysis by the application developers

In both cases, the Graphics Quality Analysis Toolkit ensieléicient means for pin-
pointing the root cause behind a visual error. An indispblesadvantage provided
by the toolkit here is the ability to effortlessly transfeaghics content from one plat-
form to another; the development platforms used by grapmaecdware vendors and

83

Table 6. An overview of the captured trace files. The bar shadicate the number of
frames drawn per second during the application’s execution

Application menu | GPS map navigator
Trace file size| 22.0 MB 6.1 MB
Duration | 45 s 1min4ds
Graphics operations | 449453 40870
Frames | 277 446
Frames / second| i, 14.58 sl NI 1.3 .46

reference engines are seldom compatible with actual ptmotusystems used by the
applications.

6.3. Application Quality Analysis

The third use case aims to assess the implementation qoBéityector graphics appli-

cation. This situation differs from the first use case in thate is nothing immediately

wrong with the graphical performance or functionality oé thpplication. The objec-

tive is to perform a preemptive quality analysis in ordermaaver issues that may not
be evident through only casual use of the application.

The hardware used in this demonstration is the same Nokiaasdh the earlier
cases. Both of the traced applications, an application lzemmenu and a global po-
sitioning system (GPS) map navigator, employ OpenGL EShicap The application
launcher presents the user with a browsable menu of apgplcabns, while the GPS
map navigator displays the current position of the devica aligital street map. An
overview of the captured traces is shown in Table 6.

The Trace Analyzer was first used to provide an overview off Iiaces, shown in
Table 6. The average frames per second figures for both tveexesgenerally within
the interactive range, and the applications appeared mesfgoto the user.

The Trace Analyzer is then used to generate a more detaidsd ofi a number of
graphics content statistics from the menu application séhstatistics are illustrated in
Figure 38. The frames per second figure is particularlyngilialthough on average,
the application maintains an interactive display refregh,rsome intermittent process-
ing causes severe drops in the graphics refresh rate. Thexceived by the user as
visible discontinuities in otherwise smooth animation.eTthagram also reveals that
the graphics content complexity generally tends to in@easund these performance
drops, suggesting that the reduced performance is relasahtething the application
is rendering at those particular moments. Especially thewsrnof uploaded texture
data correlates strongly with the low refresh rate. The remalb graphics primitives
rendered by the application is well within the capabilittéshe device at all times.

These findings warrant further investigation into the motsenlow performance of
the menu application. The Trace Analyzer is used to extraat@ber of frames around
these points in time. The traces for these frame sequendiesia several deficiencies:
firstly, graphics are being rendered to a texture, but natuiin the standard OpenGL
ES render to texture mechanism, but instead via explic#dmg back pixel and sub-

84

Primitives in Frames per second

Matrix operations Render calls

Rasterized pixels

Vertices in

Uploaded texels

1000000 T T T T

100000

10000
1000 & N W\ A A A

100 |~ —

10 [-

Frame

Figure 38. Graphics content statistics from the OpenGL ES8 menu application in-
dicate that its performance (purple line) varies greatigrdime. The low performance
seems to correlate with the periodic texture data uploady (gars) and increased ren-
dering complexity (green line), suggesting that the waaklpresented to the graphics
engine during these moments exceeds the capabilities bkitasvare. Note the loga-
rithmic vertical axis.

sequently uploading that data into the targeted textureor8#y, thegl Col or Mask

Is being used, triggering an expensive emulation operatiadhe graphics driver due

to hardware limitations. Finally, the application is madlig subregions of existing

textures, inhibiting rendering parallelism. Furthermdhres application issues a large
number of redundant graphics state modification commandsgleach frame.

In addition to these issues, the trace analysis also uns@ker problems relevant
to the mobile application platform. A major issue is that thenu application does
not pause its display refresh cycle at any point during ieration. The graphics are
updated continuously even if there are no animated elenoenise screen. Similarly,
the application does not cease rendering when anothercapph is launched from the
menu and the menu itself becomes a hidden background taskkihd of behavior is
especially detrimental in terms of battery life, since thapdpics accelerator cannot be
powered down while an application is issuing commands to it.

The GPS map navigator trace does not at first indicate anyrrdajiciencies in
the application. One exception is the fact that the grapiesbeing rendered into a
pbuffer surface instead of a more efficient window surfadacé&a pbuffer surface is
not double buffered, the graphics accelerator cannot woitkvo sequential frames in
parallel, degrading rendering performance by a factor ofawmore.

85

More detailed analysis of the trace, however, shows thaappication has two
completely different modes of working in terms of graphiesdering. The first mode
is used when showing an orbital view of the planet Earth, &sedsecond scheme is
activated when the camera zooms into a street level view. a\d@ticated graphics
rendering techniques are often beneficial with large dag fee implementation in
this case is troublesome: the street view is being renderddam entirely custom
software graphics engine embedded inside the applicalibis meant that the hard-
ware accelerated OpenGL ES engine is being completely wecha favor of the
proprietary engine whenever a street level map is displaSatte the street level view
Is quite probably the most common mode of operation for thiegtion, this design
choice is responsible for much increased processing pometbattery charge con-
sumption when compared to a hardware engine. This solutiafs likely to cause
significant performance problems on a device with a highsoltgion display. As the
software engine is completely encapsulated inside theyaton application, tracing its
operation is not possible.

The Graphics Quality Analysis Toolkit was used here to cah@duprecautionary
analysis of applications that did not appear to have majdopeance or visual prob-
lems. The findings encountered in this case, especially wijard to battery usage,
warranted for a more complete review into the design of thpdiegtions in question.

6.4. Graphics Engine Benchmarking

In the fourth use case, the objective was to evaluate a neghigsaengine with graph-
ics content extracted from existing applications. The ougs this process is an esti-
mate of how well a particular software or hardware graphlesfgrm performs with
real-world applications.

The process begins with the selection of three applicatiort®e used as sources
for graphics content. an OpenGL ES-based application leemmenu, an OpenVG
system icon loader and a Java Mobile 3D Graphics (M3G) beadkhnThe fact that
M3G is commonly implemented on top of OpenGL ES allows us iiizatthe tracer
also in this case. Each application is traced and one framrigcted from each trace.
The frames are chosen manually to represent typical graglictent of each respec-
tive application as closely as possible. The frames are ¢bempiled into a number
of benchmarks by repeating the frame multiple times. When these benchmarks
effectively indicate the steady state performance of esuhé.

In the interests of reliable benchmarking, several measemnts are conducted to
test the relative performance of the Trace Player and C cedergted from the traces.
Three different animated graphics applications are chémethe experiment: two C-
based OpenGL ES applications with simple and complex gagmespectively and
an application with medium geometric complexity implenashon top of Java M3G.
An overview of the applications is shown in Table 7. The camjty estimates of the
applications are based on the average number of triangéesndoy the application
during each frame. The simple and complex geometry bendtsvae conducted
on a Nokia N800 [13] Internet Tablet running Linux, while tM8G benchmark is
performed on a Nokia N95 smartphone.

86

Table 7. Properties of the trace files used to measure tragbantk performance.

Simple geom.| Complex geom.| M3G app.
Trace file size| 1.9 MB 29.9 MB 1.6 MB
Graphics operations | 23 264 124139 31236
Frames | 52 51 206
Triangles / frame | 2239 36934 19018

Original application 1
Trace player
Generated C code [

30 - 28.9 m

28.0

25 -~

210 214

21.4

20 —

15 —

10 —

Average frames per second

5.4

Simple geometry Complex geometry Java M3G application

Figure 39. Performance comparison between the origindicagion, the Trace Player
and C code generated from the trace. The performance of tleel€roatches that of
the original application.

The results of the experiment are shown in Figure 39. Acogrdlb the hypothe-
sis, the Trace Player may have some overhead compared toigh®abapplication,
while the generated C code will have less overhead. Thetseappear to confirm
these assumptions: the Trace Player does not achieve toerpance of the original
application, while the generated C code even surpassesgtfapance of the original
application. The penalty of the Trace Player is especigdpyaaent in the case of com-
plex geometry, where large amounts of array data need to dmddd from the trace
file. An exception is the M3G case, where all three benchmariamts scored nearly
equally. While the application in question does have modgraiomplex geometry,
the rendering loop does little more than submit that gegmetibe rasterized. Be-
cause of this, the differences between the different beackiprograms are muted, as
the majority of the work is done inside the graphics engirsteiad of the application
logic.

87

In this use case, we have demonstrated how the Graphicst@Aaklysis Toolkit
was used to evaluate the performance of given graphics i@ wide variety of
graphics engines and platforms. With the Trace Player aadCtttode generator,
benchmarking can be performed with a minimum effort on antable platform ir-
respective of which platform the original application wasng. Furthermore, no ap-
plication source code changes or access was required,jrenéie use of practically
any graphics application for benchmarking purposes.

6.5. Graphics Content Analysis

The fifth and final use case aims to demonstrate a practiceépsdor obtaining accu-
rate in-depth content features from OpenGL ES and OpenV@Gcagipns. Previously
this kind of data had to be acquired manually through delmgyggr modifications to
the application or the graphics engine.

Three applications are chosen for this use case demoostragin OpenGL ES-
based application launcher menu, an SVG-Tiny image load#rdn OpenVG, and
an OpenGL ES graphics hardware marketing demonstratiamapplication launcher
and the SVG image loader represent regular production acétwvhile the marketing
demonstration was created by graphics experts for the sxgnerpose of exercising
the capabilities of the underlying graphics engine. Alllaggtions are executed on a
Nokia N95, except for the graphics demonstration softwatech is run on a Nokia
N800.

As before, the applications are traced individually andtthees are loaded into the
Trace Analyzer. Each trace is then replayed with the Traage?] which calculates
the content statistics using the instrumented OpenGL ESOgahVG engines. Some
of the obtained statistics for the OpenGL ES applicatioessdown in Table 8 and for
the OpenVG application in Table 9.

The first section of each table lists aggregate content fesitilhat span the entire
respective trace. The remaining rows show a statisticalkal@vn of measurements
from each rendered frame. For instance, tlader calls section of the first table
indicates that the application launcher submits an avesb@@ drawing commands for
each frame. In the case of the SVG image loader, each consefraime corresponds
to a different displayed SVG file. The inline bar charts begltk figures represent the
distribution histogram for the respective value.

While some of the reported statistics are common for both ARIgst of them
only apply to a particular API. We first discuss the sharedhaites, followed by the
OpenGL ES and OpenVG specific statistics. The numberagbhics operations in-
dicates how many API calls are made in total during a framee fiimber ofrender
callsis a subset of this figure: it only includes the APl commanas finoduce visible
pixels; the remaining API calls are state manipulation c@nds. Matrix operations
refer to API calls that modify the various matrices definedath APIs. The figure
rasterized pixelsindicates how many pixels the application draws in relatotine size
of the screen. Finally, thiexel and pixel uploads indicate the amount of OpenGL ES
texture data and OpenVG image data uploaded by the applicdtiring each frame.

The OpenGL ES-specific figures begin with the numbeprafitives or triangles
submitted to the graphics engine. This figure is a very contynosed estimate of

88

Table 8. Calculated OpenGL ES content statistics.

Application Marketing
launcher demonstration
Trace file size 13.1 MB 29.9 MB
Total graphics operations 297294 124139
Surface size 240 by 320 640 by 320
Frames 165 51
Total render calls 41 257 5087
Texture data 1.5MB 12.9 MB
Graphics operations min 1421 115
max I 4664 II 4249
mean ILA____ __ 2169 l_lII m - 2433
Render calls min 88 55
max I 192 I 175
mean Wl ___ 90 l_-III la- 109
Matrix operations min 23 279
max I 115 I 880
mean | lua ____ 50 l_-III .- 550
Texel uploads min 0 0
max I 107 633 3294893
mean B________ 2864 B _ 63363
Primitives min 132 9125
(triangles) max I 444 I 98771
mean Mo ___ 102 ol s . 36934
Backface culled min 0 1795
primitives max 0 I 18177
mean 0 II II_____ 6221
Frustum culled min 0 3142
primitives max I 30 I 66 735
mean Ba_____ 0.9 Il | | - 22969
Vertices min 264 27375
max I 1144 I 296 313
mean Be——m — _ 422 ol w - 110801
Lit vertices min 0 2276
max 0 I 25451
mean ol Ilm.__ 93887
Transformed vertices min 264 10937
max I 888 I 168051
mean Bm e _ 383 Il . = 59789
Rasterized pixels min 31% 105 %
(% of surface size) maxI 315 % I 292 %
mean _-.-I--._ 140% __m I _____ 147 %
Triangle size min 588.5 3.0
(pixels) max I 2001.8 110.2
mean .|-|I____ 10460 B______ 17.7

Table 9. Calculated OpenVG content statistics.

SVG image

loader

Trace file size 1.7 MB

Total graphics operations 28276

Frames 162

Total render calls 1581

Graphics operations min 19
max I 830

mean Bl . _ 173

Render calls min 1
max I 51

mean Ill ______ 9.7

Matrix operations min 0
max I 68

mean Hl=ml__. 16

Created objects min 0
max I 15

mean Bm mea __ 3.0

Rasterized pixels min 0%

(% of surface size) max I 800 %

mean I ________ 136 %

Path size min 0.5
(pixels) max I 38903
mean B__ ___ 1476

Path segments min 0
max I 335

mean Mlu_a_m 74

Tessellated edges min 0
per path max I 111
mean Ela__ ._ 23.9

Pixel uploads min 0
max 0

mean 0

Gradient stops min 0
max I 44

mean B_mem—___ 9.1

89

90

content complexity, since the number of triangles drawngtasg implications to the
workload of the graphics engine. Since it is not uncommortriangles to be back-
facing or outside the graphics viewport, that is, invisjldagines commonly are able
to discard such primitives at an early phase in the graphmslipe. The number of
backface-culled primitives andfrustum-culled primitives describe the amount of trian-
gles rejected in this fashion. Thertex count shows the number of three-dimensional
coordinates used to define the drawn triangles. Althoughremalotriangle is made
of three vertices, it is possible to define multiple triasglgth fewer than three ver-
tices per triangle with constructs such as triangle stripsis is why the number of
vertices listed in the table is not exactly three times theper of drawn primitives.
This technique helps to limit the number lof and transformed vertices, which refer

to the subset of vertices which underwent lighting and coarte transformation cal-
culations. Finally, theériangle size describes the number of pixels produced by each
rasterized triangle.

The OpenVG-specific statistics begin with the numbecreited objects, such as
paths, paints, and images. This is followed by path size, which tells the number of
pixels produced when a path was rasterized, not unlike thegie size for OpenGL
ES. The number gbath segments shows how many segments were used to define each
drawn path. The number téssellated edges per path is a similar figure, but with a
more direct relation to the graphics engine workload. Istebw many polygon edges
the graphics engine needs to represent an infinitely smaathvrdpath as discrete
pixels. The more edges a path generates, the more compleastieeization process is
for the graphics engine. Finally, tigeadient stops figure indicates how many different
color values are used to define gradient paints.

The measurements listed in the tables warrant some obssrvaf the traced appli-
cations. The application launcher and the marketing detratien submit comparable
levels of graphics operations, but the latter uses sigmifiganore complex geometry.
In other words, the application launcher employs a reltileege amount of API calls
to render comparatively few triangles. An optimization sibgity would be to render
multiple similar objects at once.

The differences in content complexity are also apparenthénaverage size of the
rasterized primitives: the triangles drawn by the marlgetiemonstration are tiny
compared to the application launcher. Based on the large auofoculled primi-
tives, the marketing demonstration seems to rely on thehigangine to efficiently
discard invisible geometry. The application launcher @spnts the opposite extreme,
mainly submitting only completely visible geometry. Themler of rasterized pixels
was often below 100 %, suggesting that the application gaisefr by only drawing
the subregion of the screen that needed to be updated. mgg$ttiows a similar divide:
the marketing demonstration makes use of OpenGL ES lightvhde the application
launcher employs no lighting effects at all.

While both applications apply textures to the drawn triaaglleeir methods of defin-
ing the texture data are different. The marketing demotistraploads all texture data
with a single step at the start of the animation. This ensaresiooth frame rate at
the expense of memory usage, since all required textureasnage kept in graphics
memory throughout the whole animation. In contrast, theiegjon launcher up-
loads textures on demand, striving to minimize the size ®téxture memory working

91

set. Both approaches are valid, but may result in wildly défe performance figures
depending on the underlying graphics engine.

The SVG image loader uses a relatively low number of OpenVj@atb to render
to the loaded images. The trace indicated that it reusesathe sbjects by replacing
their previous contents with new data on demand. This usatierp may inhibit full
rendering parallelism on hardware engines. The rastepa#us, however, generate a
large amount of pixels on average, indicating that the vaotages do not have extra-
neously fine details. On average, the number of rasterizadspis also moderate in
relation to the output surface size, a sign that the imagemtbave many overlapping
hidden regions. No pixel images are also used, meaningthbkasdurce images are
fully vectorized.

With this use case, we have demonstrated a process for migtalatailed content
features from graphics applications with the Graphics Quainalysis Toolkit. This
method is both practical and straightforward, since it nerguno modification to the
investigated applications or system graphics engines ande extended to provide
additional statistics with moderate work. The data obthimethis manner may serve
as a guide to further application or graphics engine opation work and research
into graphics workload estimation.

This final use case concludes the use case demonstratiotechafe now move to
discuss the findings presented in this work.

92

7. DISCUSSION

The Graphics Quality Analysis Toolkit was born out of nedgskr practical and
efficient means to manage an ever-increasing amount oftgisgues in mobile vector
graphics applications. We based the design of the toolkiwelhestablished previous
research in the field. The fundamental idea of capturinghlgeapcommands into a
trace file was directly inspired by Dunwoody & Linton [22] anther pioneers. The
inherent advantage of not requiring any instrumentatiothefapplication code or the
graphics engine was an important reason for choosing theihod as the basis for
our work. Our approach, however, differed in that we keptdhegphics command
abstraction level at the level of individual API calls irstieof specifying a higher level
intermediate language. This ensured that we could capterexact behavior of the
traced application as closely as possible.

Chromium [23], the extensible OpenGL stream processingsyshas a very sim-
ilar architecture to the tracer in our system, and thus cbalee served as a basis for
our implementation. Instead, we chose to implement a custaoer through code
generation. This enabled us to support nearly any C-basedséEth as OpenGL ES
and OpenVG, while Chromium would have directly offered suppaly for OpenGL.
Additionally, our platform portability and performancegrerements on embedded sys-
tems also necessitated a customized, more focused solution

State tracking also plays a very central role in our worknltdes many of the key
use cases of the Tracer and the Trace Analyzer, such astedréame sequences
from longer traces and pinpointing quality problems in é®cSince a requirement for
the toolkit is to be graphics API-neutral, the same prireiglso applied to the state
tracker. This lead us to develop a generic tree data steistwitable for describing
the state of EGL, OpenGL ES, OpenVG, and other similar APisour experience,
this method greatly reduced the amount of work for adding geaphics APIs to our
system in comparison to hand-written state tracking codesad by Buck et al. [26],
Chromium, and others. Our method also ensures that the tgregdiics calls are
not modified in any substantial way when played back in comparto the original
application. This was important, since our system was desidor reproducible ap-
plication debugging and any unintended modification of tfagics command stream
might change the graphics engine behavior substantially.

The design of the Trace Analyzer was driven by the core usesdas the system.
Previous research into graphics workload estimation aadacierization was used as
a basis for the content features calculated from graphaces. We met our objective
of building a system that provided the features most comynoséd for workload es-
timation. While previous research only covered 3D graplaostoolkit also provides
content features for 2D vector content.

In the domain of graphical debugging, our toolkit was insg@iby related work such
as NVIDIA PerfHUD [27], GDEBugger [28], GLIntercept [29], drthe relational
graphics debugger by Duca et al. [30]. All of these solutidrevever, were based
on live interaction with the debugged application. Our aggh was to instead focus
completely on offline trace analysis. In the context of edds applications, offline
analysis was essential since the target device often lattieedecessary processing
power and usability for interactive graphical debugging.

93

Working with the trace file rather than the live applicatidscahad the added ben-
efit of providing completely repeatable graphics sequenoesffect, it separated the
examined quality issue from the application. Offline as#yalso facilitated remote
debugging, in which the execution environment and the agptin can be physically
separate from the analysis environment. Our system alsedatid possibility of trans-
forming the trace file into different formats. In our exp@ge, the ability to generate
equivalent C code from a trace file was a powerful tool in dejoug and regression
testing.

As with all software, some unanticipated challenges weredugng the develop-
ment of the Graphics Quality Analysis Toolkit. We found tleaen simple graphics
applications could submit thousands of graphics opersiilorery short time periods.
This placed strong scalability requirements to the Tracel the Trace Analyzer to
ensure applicability to production software. Another eseas that while the binary
trace file format remained stable, a number of incompatibbelifications had to be
made to the format at logical level as API coverage was refindte effect of this
was that old trace files had to be manually translated intoéve system to remain
compatible. Our design also called for the use of C headerthlelefine the graphics
API functions. In retrospect, a simpler syntax would haverbeiore viable due to the
complexity in implementing a sufficiently robust C parser.

We began this work with an overview of mobile vector graphacsl the effects
of quality issues in graphics applications. We then definethssification system for
these quality problems based on the dominant cause of tne igkjuickly became ap-
parent, that while the classification system was an effed¢tel, it required a compre-
hensive supporting toolchain for practical applicatiohislwas the driving motivation
for creating The Graphics Quality Analysis Toolkit: it efedb in-depth examination
of any OpenGL ES and OpenVG applications, providing the s&ag information for
reliable quality problem classification.

To date, the Graphics Quality Analysis Toolkit has beensssfully applied to solv-
ing numerous quality issues in production software in theply & Graphics Soft-
ware group. The toolkit has helped to significantly decreaseamount of time spent
in debugging common graphical errors and performance enablsuch as incorrect
rendering and application crashes. It has also enabled omsfof graphics engine
benchmarking, such as using the traced content of exisyiatg® applications for
benchmarking, which previously required an impracticatkveffort. The toolkit has
also offered a new level of insight into the graphics contémhobile applications, pro-
viding for valuable input into system design and graphicgires optimization work.
We are therefore confident, that the graphics trace archreeand the offline analy-
sis approach is a realistic and powerful approach to impigpwobile vector graphics
quality.

7.1. Future Work

A natural continuation to the work presented in this thests follow the development
of the graphics APIs themselves. The introduction of progreble shaders to em-
bedded systems by OpenGL ES 2.0 [56] will undoubtedly brorthfnew challenges
in vector graphics quality. While basic tracing and replgyai OpenGL ES 2.0 graph-

94

ics content is possible with minor additions to our systeme,workload presented to
a shader programmable graphics engine is closely tied todhmplexity of the used

shader program. This calls for radically enhanced compleatid workload estima-
tion methods than what are valid for the fixed function piped of OpenGL ES 1.x
and OpenVG 1.x. We feel that the architecture of our toollouid offer a practical

environment for OpenGL ES 2.0 software analysis with thetamdof such advanced
content features.

Our implementation of the Trace Analyzer was based on a cardiiae user inter-
face. It would be advantageous to explore graphical altee® as the data contained
in trace files is very graphical in nature.

The existing content features provided by the toolkit ogengossibility for further
research into clustering applications based on graphicgExity and creating syn-
thetic benchmarks based on real application content. Givieig enough sample set,
application clustering could enable classification intdqenance classes, providing a
way to roughly estimate application performance on a neplgcs architecture. The
benefit of synthetic benchmarks would be to overcome theditons of using static
traced application content for benchmarking. While benaksareated from traces
are representative of the application in question, theyarg hard to parameterize
in terms of content complexity. It could be advantageouscfmage the performance
response of particular graphics content while, for instamarying the complexity and
other properties of the drawn meshes. Currently, such beadtsnare being authored
by hand, creating a possible disconnection between redicappns and the bench-
mark content.

95

8. CONCLUSION

The aim of this thesis was to define a practical process anubstipg toolset for rec-
ognizing, analyzing and solving quality issues encoumt@memobile vector graphics
applications. Our main focus was on OpenGL ES 1.1 and OpenY@dplications
running on Symbian OS smartphones. We began with an ovemviaWwe types of
quality problems common in this domain and devised a classifin system based on
the dominant cause behind the issue:

Dominant cause in APl usage patterns
Dominant cause in graphics content complexity

Dominant cause in graphics engine

R

Dominant cause unrelated to graphics

We then examined each class of problems in detail, focusinglat information
was required to recognize issues belonging to that classedBas this analysis, we
concluded that the classification process required inkdkpowledge of the graphi-
cal behavior of the examined application. Acquiring sudormation was deemed
impractical without a comprehensive supporting toolseistthg graphics debugging
solutions were found to be targeted to powerful desktop stations or single render-
ing APIs; our aspiration was to build a system that was slétédy embedded systems
and multiple graphics APIs.

This lack of a suitable set of tools led us to design the GiapQiuality Analysis
Toolkit. The toolkit comprised three main components: ac@rafor capturing the
graphics commands executed by an application; a Trace Hiayeepeating the cap-
tured graphics commands, and a Trace Analyzer for extiguciimtent features and
other data from the trace file with the aid of custom instrureeérgraphics engines.
This design enabled the workflow of capturing the graphica aiobile application
to a trace file and extracting the needed content featureddesification in a more
powerful workstation environment.

Our approach differed from previous work in that we focusecdlesively on offline
analysis instead of live debugging. This was in part due ¢olithitations of mobile
application platforms, but a stronger motivation was thegeegability of static trace
files; once a trace is captured, it can be freely processegpardiently of the original
application. This enables a number of key operations foplycs engineering work,
such as seamless transferring of graphics content fromysters to another regard-
less of the involved operating systems, graphics engindsagplications. We also
demonstrated the possibility to apply arbitrary transfations to the stored graphics
commands, such as the conversion into C source code thatteyas the graphics of
the original application. Our system also supports extigcsubsequences of trace
files, which enables more focused analysis of complex gea@pplications.

Finally, we demonstrated the usage of our toolkit impleragon through a number
of facilitated use cases. The use cases were modeled aftex goality issue inci-
dents encountered in previous graphics system integratiok. \We therefore believe
that they accurately represent the process of analyzidguadd quality issues. In

96

the use cases, the toolkit was used to find the reason behardapplication perfor-

mance, inspect a visual error in an application, perforniiegion quality analysis,

benchmark a number of graphics engines with traced apiglicabntent and calculate
detailed content features the graphics content of an agit The Graphics Qual-
ity Analysis Toolkit enabled a practical and efficient pregdor performing each of
these use cases, leading us to conclude that the traceligrareda viable approach
for analyzing quality issues in mobile vector graphics aaions.

97

9. REFERENCES

[1] Microsoft (2007), DirectX Resource Centéit.t p: / / nsdn. i cr osof t . com
directx/.

[2] Gold Standard Group (2007), OpenGL — The Industry Stashdar High Per-
formance Graphicsit t p: / / ww. opengl . or g.

[3] Pulli K., Roimela K., Aarnio T. & Vaarala J. (Nov.-Dec. 28PDesigning graph-
ics programming interfaces for mobile devices. Computep@ics and Applica-
tions, IEEE 25, pp. 66-75.

[4] Khronos Group (2007), OpenGL ES — The Standard for Embddtcelerated
3D Graphicsht t p: / / www. khr onos. or g/ opengl es/ .

[5] Khronos Group (2007), OpenVG — The Standard for Vectoayghics Acceler-
ation.ht t p: / / ww. khr onos. or g/ opengvg/ .

[6] Khronos Group (2007), The Khronos Group: Open Stand&dgalty Free, Dy-
namic Media Technologiegt t p: / / ww. khr onos. or g.

[7] Symbian Limited (2007), Fast Factstt p://wwmv. synbi an. coni about /
fastfacts/fastfacts. htm .

[8] Sales J. (2005) Symbian OS Internals. John Wiley & Sonigk West Sussex,
England, 918 p.

[9] Symbian Limited (2007), Symbian OS v9.5 Product Shéett p: / / www.
symnbi an. com symnbi anos/ r el eases/ v95/ product sheet. ht ni .

[10] Nokia (2007), S60 Platform.htt p://ww. forum noki a. com mai n/
pl at f or ns/ s60/ .

[11] Digia (2003) Programming for the Series 60 Platform &yinbian OS. John
Wiley & Songs Ltd, West Sussex, England, 521 p.

[12] Nokia (2004), Introduction to the S60 Scalable Wkt p://wwm. f orum
noki a. com

[13] Nokia (2007), Device specificationst t p: / / f or um noki a. conl devi ces.

[14] Atlantic Book Publishing (1987) Webster’s DictionaBook Essentials Publica-
tions, Larchmont, New York, 10538.

[15] Steinmetz R. & Engler C. (2001) Human perception of meglizchronization ,
pp. 737-750.

[16] Ghinea G. & Thomas J.P. (1998) QoS impact on user pamrepahd understand-
ing of multimedia video clips. In: MULTIMEDIA "98: Proceedgs of the sixth
ACM international conference on Multimedia, ACM Press, NewkydNY, USA,
pp. 49-54.

98

[17] MacKenzie I.S. & Ware C. (1993) Lag as a determinant of anrperformance
in interactive systems. In: CHI '93: Proceedings of the SIGCbihference on
Human factors in computing systems, ACM Press, New York, NSAUpp.
488-493.

[18] Bederson B.B. & Boltman A. (1999) Does animation help usergdbmental
maps of spatial information? In: INFOVIS '99: Proceedindgshe 1999 IEEE
Symposium on Information Visualization, IEEE Computer 8bgiWashington,
DC, USA, p. 28.

[19] Symbian Limited (2005), TAT targets Symbian OS smaotpd marketht t p:
[I www. synbi an. com news/ cn/ 2005/ cn20052591. htm .

[20] Gilbertson S. (2007), Kiss boring interfaces goodbyghwApple’s new an-
imated OS.http://ww. wi red. com sof t war e/ cool apps/ news/ 2007/
06/ core_ani m

[21] Bryson S.T. (1993) Effects of lag and frame rate on vagitracking tasks. In:
J.O. Merritt & S.S. Fisher (eds.) Proc. SPIE Vol. 1915, p.-165, Stereoscopic
Displays and Applications IV, John O. Merritt; Scott S. FeshEds., Presented at
the Society of Photo-Optical Instrumentation EngineeRlEp Conference, vol.
1915, pp. 155-166.

[22] Dunwoody J.C. & Linton M.A. (1990) Tracing interactiv®3jraphics programs.
In: 13D '90: Proceedings of the 1990 Symposium on Inter&c8D graphics,
ACM Press, New York, NY, USA, pp. 155-163.

[23] Humphreys G., Houston M., Ng Y., Frank R., Ahern S., Kieh P.
& Klosowski J. (2002), Chromium: A stream processing framewéor
interactive graphics on clusters. URbttp://citeseer.ist.psu.edu/
hunphr eys02chr omi um ht ni .

[24] Sheaffer J.W., Luebke D. & Skadron K. (2004) A flexiblensilation frame-
work for graphics architectures. In. HWWS ’04: ProceedingthefACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, ACM Pixessg
York, NY, USA, pp. 85-94.

[25] Shreiner D., Woo M., Neider J. & Davis T. (2004) OpenGlogramming Guide.
Addison-Wesley, fourth ed.

[26] Buck I., Humphreys G. & Hanrahan P. (2000) Tracking gieplstate for net-
worked rendering. In: HWWS '00: Proceedings of the ACM SIGGRAPBY
ROGRAPHICS workshop on Graphics hardware, ACM Press, New Yd,
USA, pp. 87-95.

[27] NVIDIA (2007), NVIDIA PerfHUD version 5.1. http://devel oper.
nvi di a. com per f hud.

[28] Graphic Remedy (2007), GDEBugger - OpenGL and OpenGL B&i@ger and
Profiler.ht t p: / / www. gr enedy. com

99

[29] Trebilco D. (2005), GLIntercephttp://glintercept.nutty. org.

[30] Duca N., Niski K., Bilodeau J., Bolitho M., Chen Y. & Cohen 2005) A re-
lational debugging engine for the graphics pipeline. Inodeedings of ACM
SIGGRAPH 2005, ACM Press, New York, NY, USA, pp. 453-463.

[31] Wimmer M. & Wonka P. (2003) Rendering time estimation ffleal-time render-
ing. In: EGRW '03: Proceedings of the 14th Eurographics wsbdp on Render-
ing, Eurographics Association, Aire-la-Ville, Switzantd pp. 118—-129.

[32] Chiueh T. & Lin W. (1997) Characterization of static 3D ghécs workloads.
In: S. Molnar & B.O. Schneider (eds.) 1997 SIGGRAPH / EurogregphVork-
shop on Graphics Hardware, ACM Press, New York City, NY, pp.2d/-URL:
citeseer.ist.psu.edu/ 707566. htm .

[33] Mitra T. & Chiueh T. (1999) Dynamic 3D graphics workloaazacterization
and the architectural implications. In: MICRO 32: Proceegdiof the 32nd an-
nual ACM/IEEE international symposium on MicroarchiteetUEEE Computer
Society, Washington, DC, USA, pp. 62-71.

[34] Smith T. (1995) An introduction to PHIGS. Tech. rep.,irsity of Arkansas.

[35] Khronos Group (2007), OpenGL Overviewtt p: // ww. opengl . or g/
about / overvi ew.

[36] Pulli K., Aarnio T., Miettinen V., Roimela K. & Vaarala {2007) Mobile 3D
Graphics: with OpenGL ES and M3G (The Morgan Kaufmann Seni&Som-
puter Graphics). Morgan Kaufmann, 500 p.

[37] Perez A. (2000), Computer Graphics |, Course Notes, EBi2cand Multi
Texturing. http://wwm. cs. cnu. edu/ af s/ cs/ academi c/ cl ass/ 15462/
web. 00s/ not es/ di r ect 3d. pdf.

[38] Blythe D. (2006) The Direct3D 10 system. ACM Trans. Graph,. pp. 724—734.

[39] Astle D. (2006), Advanced Visual Effects with OpenGhtt p: // www.
gamedev. net/ col ums/ event s/ gdc2006/ arti cl e. asp?i d=233.

[40] Microsoft Corporation (2007), Introduction to Dire@3Mobile. http://
nsdn2. m crosoft. confen-us/library/ ns172504. aspx.

[41] Nokia (2004), OpenGL ES API And 3D Graphics On Symbian &S p: //
forum noki a. com

[42] Adobe Systems Incorporated (1999) PostScript LanguReference. Addison-
Wesley Publishing Company, third ed., 912 p.

[43] Microsoft Corporation (2007), Windows GDht t p: // nsdn2. mi cr osof t .
confen-us/library/ ns536795. aspx.

[44] Tronche C. (2005), The Xlib Manuahtt p://wwv. t ronche. con gui / x/
xlib.

100

[45] Harrison R. (2003) Symbian OS C++ for Mobile Phones. Johley\& Songs
Ltd, West Sussex, England.

[46] Microsoft Corporation (2007), WPF Graphics, AnimatiardaMedia Overview.
http://msdn2. mi crosoft.confen-us/library/ ms742562. aspx.

[47] Worth C. & Packard K. (2003) Cairo: Cross-device Renderarg/ector Graph-
ics. In: Proceedings of the 2003 Ottawa Linux Symposium.

[48] Khronos Group (2007) OpenVG ES 1.0.1 Specification.

[49] Khronos Group (2007) OpenGL ES 1.1.10 Full Specifigatio
[50] Khronos Group (2006) EGL 1.3 Specification.

[51] Henning M. (2007) API design matters. ACM Queue 5, pp.3b—

[52] Symbian Limited (2006), OpenGL ES porting guide for $yam OS.ht t p:
/I devel oper. symbi an. conl nai n/ downl oads/ paper s/ CpenG.. pdf .

[53] Free Software Foundation (2007), The GNU Project Degeught t p: / / wwv.
gnu. or g/ sof t war e/ gdb.

[54] Nokia (2007), Best Practices for HW-Accelerated GraphiOptimiza-
tion. http://ww. f orum noki a. com i nf o/ sw. noki a. com’ i d/
34a99a06- 1d7c- 4cdb- bd3b- be8cc6a28c17/ Best _Practices_for _

HW Accel erat ed_Graphi cs_Optim zation. htm .

[55] Aherne F., Thacker N. & Rockett P. (1997) The Bhattacharyietric as an Ab-
solute Similarity Measure for Frequency Coded Data. Kybira&2, pp. 1-7.

[56] Khronos Group (2007) OpenGL ES 2.0 Specification.

